188N 7 07489331

THE COMPUTER JOURNAL’

For Those Who Interface, Build, and Apply Micros

Issue Number 23 March— April, 1986 $3.00 U.S.

The C Column

Flow Control and Program Structure page3

The Z Column

Getting Started With Directories and User Areas page s

The SCSI Interface

Introduction To SCSI page7

NEW-DOS

Part 2: The Console Command Processor, Continued page 10

Editing The CP/M Operating System ragezs

INDEXER

Turbo Pascal Program To Create Index For Almost Any Purpose page 28

The AMPRO Little Board Column page 3

The Computer Corner pages:

The Computer Journal / Issue #23

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, Montana
59912
406-257-9119

Edlitor/Publisher
Art Carison

Art Director
Donna Carlson

Production Assistant
Judie Overbeek

Circulation
Donna Carison

Contributing Editors
Neil Bungard
C.Thomas Hilton
Donald Howes
Jerry Houston
Bill Kibler
Rick Lehrbaum

The Computer Journal® is a bimon-
thly magazine for those who interface,
build, and apply microcomputers.

The subscription rate is $14 for one
year (6 issues), or $24 for two years (12
Issues) in the U.S., $22 for one year in
Canada and Mexico, and $24 (surface)
for one year in other countries. All fun-
ds must be in US doliars on a US bank.

Entire contents copyright © 1986 by
The Computer Journal.

Advertising rates available upon
request.

To indicate a change of address,
please send your old label and new ad-
dress.

Postmaster: Send address changes
to: The Computer Journal, 190 Sullivan
Crossroad, Columbis Falls, Montana,
59912

Address all editorial, advertising and
subscription inquiries to: The Com-
puter Journal, 190 Sullivan Crossroad,
Columbia Fails, MT 59912

| Editor’s Page

Battle of the Bits

We are being asked to choose between
8-bit systems (usually Appie® or
CP/M?®) and 16-bit systems (usually
IBMPC® compatible). The matter is not
really choosing between them, but rather
selecting the best tool for the task.

We at TCJ are not ignoring or fighting
the 16-bit MSDOS® machines—they are
often the best choice because of the sof-
tware availablee When a non-
programmer who has an older CP/M
machine asked my advice on buying ac-
counting and inventory management sof-
tware for his system, I advised that it
would be better to buy an IBM clone plus
the software than it would be to buy the
software for his CP/M machine. He
needs software, and the best software
with the best support at the best price is
available for the MSDOS machines. On
the other hand, I see no reason to replace
my Z-80 systems for writing, editing,
typesetting or managing our subscriber
data base while the existing software is
doing a satisfactory job. I probably will
get an AMPRO 186 system (80186 CPU)
in order to run some of the great software
utilities for Turbo Pascal® , C program-
ming, and to be able to use the 8087
coprocessor—but I will continue to use
my three Z-80 ZCPR3 systems too! I'll
get the 16-bit system not for the system,
but rather because the programs I need
are written for it.

The reason that I am choosing the
AMPRO 186 instead of an IBM clone is
that I don’t need hi res graphics or sound,
but I do need a well built high quality
system with lots of I/O capability. The
AMPRO uses a serial ASCII terminal
which is much faster than bit-mapped
graphics for character oriented writing
and editing; plus it has extra ports for
RS-232 and a parallel printer, a connec-
tor for two more floppy drives, and a
powerful SCSI/PLUS® interface port.

Operating Systems

One of the reasons that Tom Hilton and
I will continue to support the 8-bit CP/M-
like systems is that the operating system
is a program on disk and we can modify
it, or even write our own operating
system. Many people are satisfied using
the operating system supplied by

someone else, but others have the need to
be abie to change the system to ‘Do it my
way."” As Tom says “‘If you cannot make
the system do as you want it to, there is
no purpose in having a computer.’”’ I have
some odd-ball interests which are en-

tirely different than what the system
designers had in mind, and I need to be
able to write a system to do what I want,
the way I want todoit.

In fact, I have a number of applications
which need different operating systems.
Where did we ever get the idea that we
should only have one version of an
operating system for all of our uses? One
of the greatest faults with CP/M is that it
was designed with the idea that an OEM
or system implementor would configure
the BIOS once, and the user would use it
for ever more—or else they would hire a
system implementor to reconfigure it
and then use only the revised system.

“If you cannot make the
system do as you want it to,
there is no purpose in
having a computer.”

The idea of one unchangeable con-
figuration does not meet today's needs
when we may want to choose between
three or four different output devices.
Perhaps we want to send a rough draft to
a parallel port for the dot matrix printer,
send the final version to a serial port for
the daisy wheel printer, send a copy to
another serial port for the modem for
transmission to another office, and then
send the next document to a lazer prin-
ter. CP/M is not designed to handle this,
perhaps one of our MS DOS experts can
tell us how it can be done with that
system. It CAN be done with a Z-80
system working thru the SCSI interface
or an S-100 system with extra [/O cards.
The S-100 systems are not popular now,
but they do offer almost unlimited I/0
which is the weakest area in the IBM PC
compatibles. The PS's are intended for
the normal office environment where
they serve one printer and a modem.
While they do have an open bus with
slots, I don’t think that they are practical
where you want three or four parallei I/0
ports (full bidirectional latched input and
output, not just output as impiemented in
most parallel printer ports) plus six or
eight series ports (some of which will
need 20ma current loop drivers) [feel
that the only suitable systems for these
applications are S-100 with a 22 slot
mother board, SCSI Plus, or one of the
industrial buses.

Yes, I realize that programs | wnite to

run on my modified operating systems
will not be portable because they won't
run on anyone else’s system. I don't
care! I'm writing what I need to do what
I need done, and a non-portable package
which does my job effectively is a lot bet-
ter than a portable program which does

- the job poorly. The operating system is
not sacred and I intend to mess with it. If
what 1 develop does the job so much bet-
ter than anything else that someone else
wants to use it, they can buy the same
hardware and use my package which in-
cludes the operating system. One nice
_thing about using your own operating
system is that you can supply it to others
without paying a license fee, and it can
be designed to be implemented in ROM
for dedicated controllers. The operating
system and the application software are
both programs, and as they are in-
tegrated to work closely together the dif-
ferences between the system and the
program become less distinct and they
can be merged—if the system source
code is in the public domain. You can
strip out the non-essential portions (some
ROMed applications won’t have drives),
combine it with the program, and end up
with one combined file. Would you call
that an operating program?

Why NEW-DOS?

Some people have questioned whether
there is a need for another operating
system, and we want to explain our
reasons for publishing the NEW-DOS
series. One of the primary reasons for
the NEW-DOS is educational. Our goal is
to show you how an operating system
works, how it is written, and enable you
to write or modify an operating system. I

feel that at the current time, operating
systems shouid be written in assembier,
and Tom’s step-by-step program
development with source code and a
public domain assembler will demon-
strate that assembler is not as difficult as
commonly reported for this application
(I wouldn’t want to write floating point
math, array, or string handling routines
in assembler unless they were intended
for large volumn distribution). Therefore
part of our eduational goal is to en-
courage you to learn how to use assembly
language.

Another reason is to provide a free
CP/M compatible system which can be
included on our (or your) distribution
disks. It is important that source code
with step-by-step instructions are
available so that you can fully under-
stand how to modify the system. For nuts
like me another reason is to provide a
small system nucleus which we can
change, expand, condense, or whatever
for specific non-standard applications.

We chose a CP/M like system because
its features are well documented, and it
represents a minimum system which is
useful for a teaching tool, yet simple
enough to understand. I doubt if many
would want to follow a series on writing a
UNIX® equivalent. The knowledge
gained from this project will enable you
to modify other systems, such as ZCPR3
or MS DOS® . In fact, I'd like to
challenge MS DOS advocates to author a
series on writing a public domain
equivalent, or at least modifying it (in-
cluding modifying the ROM’s).

I'll probably use ZCPR3 on the AM-
PRO for the development system
because of the power of the system and

AFFORDABLE

’ . .. ENGINEERING
FREE CATALOG MSDOS SOHWARE PCDOS

* LOCIPRO Root Locus — $69.95

® ACTFIL Active Filter Design/Analysis — $69.95

e STAP Stauc Thermal Anatysis — $69.95

* MATRIX MAGIC Matnx Manipulation — $69.95

* RIGHTWRITER Proofreader & Writing Style Anatyzer — $74.95
* ACNAP2 AC Circuit Analysis — $69.95

* DCNAP DC Circuit Analysis — $69.95

® SPP Signal/System Analysis — $69.95

® PLOTPRO Scientific Graph Printing — $69.95

0 PCPLOT2 High Resolution Graphncs — $69.95

™

),

Engineering

Protessional Sottware

w

.\ 1200 Busmess Wy Suite 20, 8 Riveroge CA9250! .'7"‘, 781- OZSZJ

==

The Computer Journal / Issue #23

the large number of utilities they supply,
and their upcoming multitasking and
banked/partitioned versions plus ‘‘ZC-
PR3: The Libraries”” will facilitate the
programming which will mostly be done
in assembly. Licenses from Echelon are
very inexpensive, they supply the source
code for almost everything, they con-
stantly expand and update their produc-
ts, offer outstanding support, and have
released about 2 million bytes of code
which is on over fifty Z-Nodes and has
been given to SIG

Source Code Required

The availability of source code from
Echelon brings up another very impor-
tant point. I don’t intend to use programs
unless I have the source code. There are
a few exceptions—I'm currently using
WordStar® and Condor3® for which the
source code is not available, but I'll have
to disasseble portions of their code to
make some very minor (but very
necessary) changes which would be easy
if I had the source code. There are other
programs such as Turbo Pascal®, C
compilers, DSD 80® , and the SLR
Systems assembler and disassembler for
which I wouldn’t expect the code. But in
these cases there are other programs
which could be used with my source files.
I don’'t want to trust my accounting,
database, or other files to copy protected
software without the source code. Some
users are reporting problems with copy
protected programs because the com-
panies have gone out of business and
crashed disks can no longer be replaced.
My goal is to use software where the
source code is available whenever
possible, I won’t even consider using
copy protected programs.

The Next Hacker's Bus?

While programmers can write sof-
tware for their own use with little regard
to what the rest of the industry is doing,
Hardware Hackers have to design
around what is available in the industry.
We read the professional engineering
magazines (Electronic Design, EDN,
Electronic Engineering Times, etc) to
keep up with current events and future
trends, and have been paying particular
attention to the buses being used for in-
dustrial applications. The STD bus is one
of the older buses still in active use, and
has been upgraded to include MS-DOS®
compatible operation with the 8088.
Muitibus® (Intel) has been redesigned
as MultibusII® , and both versions are
active. The bus with the greatest activity
is the VMEDbus® , and the most frequen-
tly used CPU is the 68020. We can't
always afford the latest state of the art
products for our personal projects, but
quite often hardwarefrom industrial

(Continued on page 6)

The Computer Journal / [ssue #23

The C Column

Flow Control and Program Structure

By Donald Howes

The use of the C programming language is spreading
rapidly through the microcomputer community. Once thought
to be restricted to the area of ‘‘systems’” programming, it has
spread to become a dominant language in the development of
applications programs as well. Uses include such diverse areas
as word/text processing, statistical analysis, graphic display
and artificial intelligence applications.

Hi, my name is Don Howes, and I'd like to welcome you to the
kick-off of The C Column. In this column, I'll be looking at some
of the tricks and giving you some tips for writing fast, efficient C
code, which you can apply in your own programming. I'll also
try to pass on to you any news that I gather about changes in
popular versions of C compilers, as well as news about the ANSI
C Standards committee (which has already had an impact on
new compiler releases).

But about the C language, just why has it become so popular?
Here are a couple of reasons drawn from my own previous
programming background in FORTRAN and Basic, which may
shed some light for people who have never used the language, or
have been put off by the cryptic appearing syntax.

Modern Control Flow

This may not seem like all that much, but it is hard to explain
just how restrictive it is to be confined to IF-THEN-ELSE and
DO-loop (or FOR-NEXT loop) constructs, when other types
have become available (we won't talk about GOTO'’s, since it is
my biased opinion that their use leads to spaghetti code, and
that mentioning GOTO and control flow in the same sentence is
a contradiction in terms). The C language has if-else (‘‘then’’ is
not used in the language) and do while (equivalent to DO or
FOR-NEXT constructs), but in addition includes while, for and
switch statements. I have demonstrated some of these in a short
(rather useless) program (Figure 1).

What the program does is to read character input from the
keyboard, and keeps a running count of lower and uppercase e’s,
which are reported after the user has indicated the end of input
by typing CNTRL-Z (the CP/M end of file marker). The
program could be improved by adding the capability of

checking for entry of a backspace character (which could
remove one of the previously counted e's), but that would add
some complications to what is only an example program. In the
program, I have used both the while and switch constructs to do
the counting. The while statement performs a loop until the test
condition present at the beginning of the loop is satisfied, at
which peint the loop is terminated. The nice thing about a while
loop is that the test condition is checked prior to the beginning of
each loop (unlike a DO loop or a FOR-NEXT loop, which tests at
the bottom of each loop). This means that the loop is not entered
if the test condition is met immediately (in this case, if the first
character entered is EOF).

Internal to the while loop is the switch statement. What a swit-
ch does is take the value of a variable (in this case, the variable
'c’) and compares that value to the cases listed. Here [am
checking for upper and lower case e’s, all other values for the
variable (all other ASCII characters) will fall through the swit-
ch. When one of the cases is found to be true, the code following
the colon is executed. The break statement is needed to prevent
the program from falling through to the next case and executing
the code (the 'case’ is just a label, not an executable statement).
Break causes an immediate exit from theswitch.

Program Structure

This means more than just what the code looks like, but goes
to the heart of program development using the C language.
While it is, of course, possible to write structured (or for that
matter, unstructured) code in any language, some languages
lend themselves more easily to the task. While there has been a
lot of talk in the computer magazines, it does bear repeating
that structured code is easier to maintain and extend than an
equivalent unstructured program. This is due to the logic of the
programming task being explicitly detailed in the layout of the
program.

The C language makes structured programming easier
through its use of functions. In this language, everything is a
function. If you look again at Figure 1, you will see that even the
declaration of ‘main’ shows it to be a function. This is shown by

ddefine EOF -1
sain()
<

int c,low_e,cap_e}

low_escap_a=@}

switch (
case '@’
low_ae++g
breaks
case 'E’?
cap_e++}
breaks
>

printf(*"\nlowercase e = %d,

/% cp/m end of file marker &/

/# {initialize counters #/

while ((csgetchar()) != EOF)

Figure 1: C Control Flow Example.

uppercase E = Xd\n",low_e,cap_e)}

the use of parentheses [main()]. In this case, there are no
arguments being passed to main(), but there can be. The two
possible parameters are ‘‘argc’ and ‘‘argv’’, which are the
number of parameters and an array of pointers to characters
respectively This is shown in the following code fragment. Sup-
pose you have written a simple copy program (which we will
reasonably call copy) for copying an old file into a new file.
- What you have to pass to the copy program, therefore, is the
names of the source and destination files. This can be done with
the command

copy somefile.txt newfile.bak

In the code for the program copy the main() function would be
_declared as follows:

main(arge,argv)
int argc,
char ,argv(l;

code to do copy

Within the code, you would use ‘‘argc’’ to check on the proper
number of input parameters (that there are two filenames) and
‘“argv’’ would hold the actual filenames of the input and output
files. For the program to work properly, there would have to be
a fair proportion of error checking code to make sure you
weren’t trying to copy from the source program to itself, copy
into a file that already existed (unless you wanted to), etc.
Writing that type of code is a column in itself, but not right now
(as an aside, making sure that you have protected users from
themselves is generally known as bulletproofing. I'm sure the
reference is to not shooting yourself in the foot. Remember
"Murphy’s Law).

The whole idea in C programming is to hide the low level fun-
ctions from the programmer through the use of user created
functions (in this case, the user is yourself, the C programmer).
It has been said that the best type of C code has a main() fun-
ction containing nothing but function calls, but I think this is a
little excessive. Generally, the main() function should only con-
tain code that is specific to the application being written. Calls to
functions should be generalized so that the same function can be
used in a number of different applications and for a number of
different data types, if that is necessary (an example of this
would be a generic sort routine which could be used equally well
on character, integer and floating point data). The only thing
which the programmer should need to know about a function is
what type of input is required and what type of output can be ex-
pected. Everything else is a black box (it really could be magic,
for all you want to know).

Where To Go From Here?

1 think I've run on enough for one session, which is too bad,
since there were other things that I wanted to cover, maybe next
time. If I've managed to prick your interest in this language,
then I'm happy, but I don’t want to leave you stranded. So, here
are some books that I've found useful when I was starting out
and still use for reference and as sources of inspiration.

1. Brian Kernighan and Dennis Ritchie, 1978, The C
Programming Language (this is the bible of C programming
[almost always referred to by its initials “K&R''] and is what

compiler companies mean when they say a “‘full K&R im-.

plementation”’, this book is a must).

The Computer Journal / Issue #23

2. Jack Purdum, 1983, C Programming Guide (this is the first
book I bought on C programming, it’s now into a second edition.
I found it to be very clear, with lots of examples, I still refer to
it).

3. Samuel Harbison and Guy Steele, Jr., 1984, C A Reference
Manual (this is a reference manual with a vengeance, not light
reading but covers everything I've wanted to find. Clears up or
at least makes explicit some of the ambiguities present in
K&R).

4. Brian Kernighan and P.J. Plauger, 1976, Software Tools
(while not about C programming per se, if you want to learn
more about the mechanics of structured programming, this is
the book for you).

In addition to these books, let me recommend the C Users’
Group to you. I am a firm believer in the idea that a program-
mer only becomes better by looking at and massaging other
peoples code. The C Users’ Group is the main organization for
the dissemination of public domain C code, and you will have
plenty of opportunity to learn from looking (and if you don’t like
the way it was done, have fun changing things, I have). Their
address is

C Users’ Group
Box 97
McPherson, Kansas 67460
(316) 241-1065

Membership fees are $15.00 domestic (Canada and Mexico) and
$25.00 overseas. They publish a newsletter about four times a
year and have an extensive library of C code available for little
more than the cost of the disk and mailing. Give them a call,
you'll be glad you did.

Next time in this column, we’ll get down to brass tacks and
look at some working, useful code. I'll be talking about filters,
something which most people don’'t know how to write. We'll
look at some simple filters to remove and replace tab characters
and a handy little Wordstar to ASCII conversion filter. Remem-
ber that this column is for you, so if you have any comments,
suggestions for future topics or questions you would like me to
address, drop me a line C/O The Computer Journal. See you
next time. @

The Computer Journal / [ssue #23

The Z Column

Getting Started With Directories and User Areas

By Art Carlson

ZCPRS3 has attracted a lot of attention, and people are
asking “‘What is It?"’, “What Will It Do For Me?"’, and ‘‘How Do
I Use It?" I asked these same questions before I started using
ZCPR3, and the purpose of this column will be to help users
learn how to USE an implemented ZCPR3 system.

As Tom Hilton stated in one of his articles last issue “‘I never
know where to begin, and where ever I begin I should have
covered something else first.”’ In presenting ZCPR3, I also have
the problem of deciding where to begin. I feel that one of the
reasons that I delayed using ZCPR3 is that the manuals and
literature I saw were all aimed at the experienced programmer
with page after page of highly detailed technical information on
using ALIAS, VMENU, and other advanced features which 1
didn’t even understand. The literature described what the ad-
vanced implementor could do with ZCPR3, but it didn’t tell the
average user how to get started. In this column, I intend to cover
ZCPR3 from an average user’s viewpoint, starting with the sim-
plest steps (just as I recently started), and slowly advancing to
the more involved features. While the user will be the main
focus of this column, TCJ won’t neglect the advanced program-
mer whose interests will be covered in other articles.

One of the most confusing aspects of ZCPR3 is that it is not a
single, well-defined, program, but rather a large assortment of
parts from which you can choose the features you need for your
implementation. This provides a lot of flexibility, and I intend to
assemble several systems, each tailored for a specific use. The
advantage of our disk based operating system is that we are not
forced to use one system for everything, but can have different
operating systems for different applications.

But, before we learn to configure our own system, we have to
understand what ZCPR3 is all about! When I received the AM-
PRO 122 Bookshelf Computer it came with ZCPR3 installed, and
all I had to do was boot the system disk to be up and running, so
getting started with ZCPR3 was simple. Working with it is also
very simple, and very rewarding.

Getting Started With ZCPR3

Since this column is for the beginning user who wants to know
how to use ZCPR3, I will assume that you have it up and run-
ning. You can either get an installed version (such as AMPRO),
get someone to help you install it, install it yourself, or get
Echelon’s self-installing version. Later we’ll talk about in-
stalling different features, but right now we’ll learn how to use
its basic features, and how it differs from CP/M® . Qur exam-
ples will be from the AMPRO disk A60101, plus information from
“ZCPR3 The Manual” by Richard Con (this book is available
from Echelon and is essential for understanding ZCPR3.) The
AMPRO implementation comes up with a MENU installed by
SHELL, but that's not where we are going to start. You can
either use the MENU for now, or if you're familiar with CP/M,
just enter a control C to exit to ZCPR3 without the menu feature.

Directories and USER Areas

One of the first advantages of ZCPR3 that you will encounter
is that you can access programs and display the directories
from other drives and user areas. I feel that this feature alone is
enough to justify replacing CP/M with ZCPR3.

Many CP/M users never use the USER area feature because
of the very poor implementation under CP/M 2.2. For those who

aren’t familiar with it, I'll start by describing the CP/M im-
plementation so that you can understand ZCPR3's advantages.
Both CP/M and ZCPR3 maintain only one directory on the disk,
and the files from the different user areas are all combined in
this one directory with the user area indicated in the disk direc-
tory (byte 0 of the disk directory entry for the adventurous who
want to do some snooping).

With CP/M 2.2, you can only access files or read the direc-
tories for the current user area. When you boot the system, you
start out in user area 0 (zero). In order to access a different user
area, say user area four, you can enter ‘USER 4" followed by a
return. Now you can read the user area four directories of any
drives on the system, and you can use the files in user area four,
but you can’t access files or directories in other user areas. You
have to use PIP.COM to transfer the files you want to use into
the user area, but you can't transfer files into the user area
unless PIP.COM is already there! How do you put PIP into the
user area in the first place? You have to log into an area where
PIP is present, use DDT to load PIP.COM, write down the
decimal number of pages as reported by DDT, enter GO to
return to CP/M, enter the the desired user area (such as USER
4), then SAVE XX PIP.COM where the XX is the number of
pages to be saved expressed as Hexadecimal (you have to con-
vert it from the decimal number reported by DDT). Now you
can use PIP to copy the other files you need into the current user
area. You still can’t use files in other user areas without first
copying them into the current area. And if you want to use a file
(such as D.COM) in all user areas you have to transfer a copy of
it into every user area, after first putting PIP into every user
area. This means that with 15 user areas you would have 15
copies of PIP.COM and 15 copies of D.COM on the disk. It’s little
wonder that few people used the user areas as implemented by
DRI in CP/M 2.2. A number of utilities have been developed to
partially alleviate this problem, but few of them approach the
power of the ZCPR3 system.

When you boot ZCPR3, the prompt (A0>) tells you which
drive and user area you are logged on. If you want to change to
user four on drive B you just enter B4: and a return. ZCPR3 in-
corporates a PATH routine which will search various drive and
user areas for a particular file, so if you are in B4 and want to
use D.COM which is in A0 you enter “D” (from now on the
following return will be assumed) and ZCPR3 will find D.COM
and run it without making any extra copies!

You can enter the command “PATH" to display the current
searching sequence which AMPRO supplies as:

(1) Current drive, current user.
(2) Current drive, user 0.

(3) Current drive, user 15.

(4) Drive A, current user.

(5) Drive A, user 0.

(6) Drive A, user 15.

The PATH command can also be used with arguments to change
the searching sequence, and named directories can be used.
With named directories you could name A15 as TEXT and then
call up a directory of all your text files in that directory with the
command ‘DIR TEXT:"

(Continued on page 43)

BD Software, Inc., maker of the original
CP/M-80 C Language Development

System, knows

Time is precious

So the compilation, linkage and execution
speeds of BDS C are the fastest available, even
{especiatly!) on floppy-based systems Just ask
any user' With 15,000 + packages sold since
1979, there are /ots of users . .

New! Ed Ream's RED text editor has been
integrated into the package. making BDS C a
truly complete, self-contained C development
system.

Powerful original features: CDB symbolic
source-tevel debugger, fully customizable
library and run-time package (for convenient
ROM-ing of code), XMODEM-compatible
telecommunications package, and other sample
applications.

National C User's Group provides direct access
to the wealth of public-domain softwars written
in BDS €. including text editors and formatters,
BBS’s, assemblers, C compliers, games and
much more.

Complete package price: $150.

All soft-sectored disk formats, plus Appie

CP/M, available off-the-shelf. Shipping: free. by
UPS. within USA for prepaid orders. Canada: $5.
Other: $25. VISA. MC. COD. rush orders accepted.

i - DSoftware, ne.

BD Software. inc.

P 0 Box 2368 -
Cambridge MA 02238 ""'\
617+ 576 + 3828 ',‘

“ 2

The Computer Journal / Issue #23

Editor

(Continued from page 2)
overruns and revisions can be
economical and powerful additions for
our hardware projects.

For hardware hacking on
measurement, control, robotics, and
other 1/0 intensive projects we need
hardware designed for these applications
instead of hardware designed for per-
sonal or office computing! There used to
be a lot of activity with the S-100 system,
but there is very little done with S-100
now. The STD bus is very attractive
because it has been in use for a long time
and there is a lot of surplus hardware
available. My other choice would be the
VMEDbus because of the 68XXX robotics
and control boards being announced
every day. The problem with VMEbus is
that the products are new and high
priced for industrial applications which
makes them too expensive for my use.

Do You Want Bus Information?

I am very interested in what’s being of-
fered for the new buses, including boar-
ds, programming techniques, operating
systems, peripherals, etc., but I need to
know if I'm boring you. I feel that the
hardware hackers computers of the
future will come from these developmen-
ts. The PC bus is not very useful for my
needs (it wasn’t designed for it), S-100 is
stagnant, and we need something on
which to concentrate. The SCSI bus has a
lot of possibilities, but we’ll have to see if
industry uses it for applications in ad-
dition to interfacing hard disk drives.
Perhaps the hardware and software
hackers will have to get the ball rolling
on this. The question is, ‘‘Do you want
TCJ to publish information on current
bus developments?” Write and let me
know what you want (see info on RBBS
below), or I may just keep this info in my
own file.

The TCJ RBBS is Coming

We have just received the good news
that the phone company has added
multiplexers in order to provide the ad-
ditional line we need for our RBBS. Now
we are looking for the equipment (and
the time) to get a board up and running.
Tom Hilton is working on the software,
and I hope to be able to announce the
board in the next issue. Think about what
you want on the board in addition to TCJ
program listings and messages—we
don’t intend to offer all the programs
which are already on many other boards.
Ours should be unique and special. B

The Computer Journal / Issue #23

The SCSI Interface
Introduction to SCSI
By Rick Lehrbaum

Introduction

In this part of The Computer Journal’s series on the Small
Computer System Interface (SCSI), we will take an introduc-
tory look at the features and functions of SCSI, both from a sof-
tware and hardware perspective. This article will serve as a
sort of ““SCSI Primer.”” We’'ll see why and how SCSI is used,
what it offers to the computer system (and to the user), and how
it is structured architecturally.

The next part (Part 3) of this series will go into greater
technical detail on the SCSI software and bus interface
protocois, while Part 4 will include some simple SCSI design
examples. After we’ve established the basics in Parts 1 through
4 of this series, we’ll explore some new SCSI developments (in-
cluding SCSI/PLUS, Super SCSI, and Enhanced SCSI!), look at
some specific SCSI products (disk, tape, optical, ...), and
discuss some unique SCSI applications (scanners, emulators,
L

Why SCSI1?

As we saw in Part 1 (TCJ Issue #22, page 25), SCSI grew out of
the Shugart Associates System Interface (‘‘SASI’’) as a matter
of practicality. Shugart was tired of waiting 18 to 24 months for
sales to ramp up after the introduction of each new disk drive
technology. So Shugart invented SASI to simplify the addition of
new mass storage devices to existing systems. SCSI is simply
standardized SASI. The Shugart Associates System Interface
became the ‘“Small Computer System Interface’’ (SCSI) when
the American National Standards Committee X3T9.2 took on the
task of standardizing SASI.

The purpose of SCSI is to create a high level interface to
peripheral devices, so that system designers have an easier task
interfacing existing systems to new peripheral devices. This is
accomplished in two ways:

(1) The hardware interface is reduced to a simple bi-
directional data path with a few simple handshake and control
signals. The result is a ‘‘buffered’’ bus which is independent of
both the computer and the peripheral device to which it is con-
nected—a sort of common meeting ground for the system and
the peripheral.

(2) The software interface is generalized so that a common set
of software commands can be used to control peripheral devices
within a given device class (e.g. random access devices) in-
dependent of their specific features and design.

Ideally, this isolates the host computer from the specific
details of the peripheral device. When properly implemented,
SCSI allows a variety of devices to be interchangeably connec-
ted to a computer system, with no change to system software or
hardware interfaces. For example, two SCSI hard disk sub-
systems might appear identical to the host computer with the
exception of the number of megabytes of data they can store,
even though the subsystems may contain entirely different
drive technologies. In fact, one company will soon introduce an
SCSI tape drive that looks like a hard disk drive to the host’s sof-
tware.

SCSI therefore offers the possibility of true ‘‘plug-and-play”’
system integration. The computer system has an SCSI ‘‘socket”
and a set of software SCSI device drivers and formatters. SCSI
even provides commands which allow the host computer to ask

connected devices what they are and how big they are. Con-
sequently, peripheral device drivers and formatters can be
written to automatically configure themselves to the charac-
teristics of the SCSI devices. For example, a host computer
might automatically determine what devices are attached to its
SCSI bus on powerup, when the system initially ‘‘boots," and
configure itself accordingly.

Unfortunately, the plug-and-play promise of SCSI has not yet
been fully realized. At this time, system software generally can
only deal with a few specific SCSI makes/models, and must
either be told by a system installer, or must perform some sort
of test to determine, what make and model of SCSI device is
connected.

There is, however, no fundamental obstacle to plug-and-play
SCSI. In fact, two recent events have contributed to an upsurge
in SCSI product compatibility: (1) The ANSC X3T9.2 committee
has forwarded the final draft SCSI document for public release
and final publication; and (2) SCSI product vendors have begun
to cooperatively agree on ‘‘common command sets’’ which
create an enhanced level of software uniformity relative to that
required by the SCSI specification. We'll cover the first of the
common command sets, the Common Command Set for Ran-
dom Access Devices (e.g. hard disk), in a future article in this
series.

An SCSI Architecture Overview

Before we begin on our exploration of SCSI, let’s define a few
terms.

SCSI was intended to provide an ‘‘intelligent’’ interface bet-
ween computers and peripheral devices. In many ways, SCSI is
like a network. Up to 8 intelligent devices can share a single SC-
SI bus. Any SCSI device on the SCSI bus can communicate with
any other device on the bus. This is termed a ‘‘peer-to-peer’’ ar-
chitecture.

There are three typical configurations of SCSI. Some im-
plementations involve a single computer and a single peripheral
device. Others have one computer and multiple peripherals.
Still others envolve multiple computers sharing multiple
peripherals.

In SCSI lingo, the computer is officially called an ‘‘Initiator”
and the peripheral device is called a “Target.”’ The three SCSI
configurations, shown in Figure 1, are:

Single Initiator, Single Target
Single Initiator, Multiple Target
Multiple Initiator, Multiple Target

We'll learn more about the differences in these three con-
figurations in the next part of this series. Most systems fall into
the Single Initiator, Single Target category, which might be
thought of as ‘‘simpie SCSI."”

Breaking up the Controller

What SCSI has done is to ‘‘break’’ up the traditional system in-
to a new set of partitions. (See Figure 2.)

Traditionally, the host computer is usually connected to
peripheral devices through a custom device-specific controller.
As an example of the traditional system partitioning, consider
the typical hard disk drive controller used to interface an S100
system to an ST506/412 type hard disk drive. It contains a

Peripheral devices such as magnetic-disks.
printers, optical-disks. and magnatic-lapes

Computer J:’é_’ Controlier

(a) Single Initiator, Single Target

SCSI BUS ¢

_,
Host
Adapter

=

ﬂ

50

.

Contratier

(b) Single Initiator, Multipie Target

SCSI BUS Controtler |

=2
Computer § f.:
-

Computer

Controiter

Controlier

Computer Controtiar

Host
Adapter

U wj[

j\}*\} -
oﬂ
O

s

(C) Multipie Initiator, Muitiple Target

Figure 1: SCSI Configurations.

serializer/de-serializer, a data separator, error correction
logic, buffer logic, a system bus interface, and drive interface
logic. On the software side, unless the controller card has its
own on-board microprocessor, the host system software must
oversee every aspect of the controller, including drive control,
data control, error recovery, buffer management, formatting,
etc.

In an SCSI-based system, the device controller function is
divided into two parts. One part takes care of the actual physical
device (in this example, the hard disk drive). This part is called
the SCSI formatter/controller. The other part interfaces the
host computer to the SCSI bus, which is how the two parts of this
“broken up” controller communicate with each other. This
second part is called the Host Adapter, and is often a single IC in
microprocessor based host computers. A single Host Adapter
can control up to seven SCSI controliers (which can each control
many peripheral devices).

The Importance of Intelligence

SCSI not only breaks the traditional controller hardware up
into two parts, but also divides up the software. To do this, each
SCSI device controller has its own local intelligence.

The SCSI controller uses an on-board microprocessor to con-
trol the SCSI interface. In addition, the SCSI controller’s on-

The Computer Journal / Issue #23

board microprocessor contains the firmware required to control
and format the peripheral device. For example, the controller’s
firmware would include such SCSI commands as Format Unit,
Read Data, Write Data, Test Unit Ready, etc.

Since the detailed device interface and control algorithms are
provided in ‘“‘canned” routines, accessed through SCSI's high
level commands, the expertise and responsibility for the low
level device interface rests with the controller manufacturer,
rather than with the system’s designers and programmers. The
system need only properly handle the high level SCSI comman-
ds, which are quite similar to operating system functions.

The Results

The peripheral control firmware that resides on the controller
provides a tremendous savings in system software design time,
expense, and headaches. New or added types of disk drives or
other peripheral devices can often be added to a SCSI-based
computer system in days rather than months. Less obvious,
but equally important, is an important side benefit: a substan-
tial improvement in both reliability and functionality. After all,
the controller manufacturer is an expert in the peripheral
technology for which the controller is designed.

The SCSI controller’s on-board microprocessor provides a
degree of parallel processing which saves the host computer the
burden of low level peripheral control and maintenance. In
many systems the performance available with SCSI controllers
is two to five times that available with traditiona! device-
specific controllers.

SCSI Bus Signals

The SCSI physical bus interface is fairly straight forward.
Although we won't be dealing with bus interface details until the
next part in this SCSI series, let’s look very briefly at the bus
signal functions:

DB0-DB7—Eight bi-directional data lines. It is over these lines
that the data is transferred between the Initiator and the Target,
in either direction. These lines are also used as device selects
during the initial selection of a Target by an Initiator.

DBP--Data bus parity. This is an option, and often not used.

BSY—Busy. Indicates bus is in use. This signal is initially ac-
tivated by an Initiator to gain control of the bus, but later asser-
ted by a Target to indicate that it is active on the bus.

SEL—Select. Used by one device to establish communication
with another. Controlled by the Initiator.

C/D—Control/Data. Indicates type of information on data
lines. Controlled by the Target.

1/0—Input/Output. Indicates direction of data transfer bet-
ween devices. From Initiator to Target is called ‘‘Output.” Con-
trolled by the Target.

MSG—Message. Indicates that the Target desires to send a
message to the Initiator while the Target is selected. Controlled
by the Target.

REQ—Request. This signal is driven by a Target, once selec-
ted by an Initiator, to indicate that it is ready for a byte of data
on the data lines.

ACK~—Acknowledge. This signal is driven by an Initiator in
response to a REQ signal from a Target, once the required data
has been piaced on, or read from, the data lines.

ATN—Attention. This signal is used by an Initiator to indicate
a special condition or status to a selected Target.

RST—Reset. Used by an SCSI device to reset all bus devices.

These signals can either be driven with single-ended or dif-
ferential line drivers, depending on whether the system chooses
to implement SCSI'’s Single-Ended or Differential Option. We'll
look at the differences between these two interface options, as
well as the signal timing relationships, next time.

The Computer Journal / Issue #23

Traditional Device Controllers
Disk (
Drive Disk Controller
Tape %
Drive 7 Tape Controlier
SCSI Controllers
' !
Disk)r Disk ’;“‘
Controller us
Drive Adapter
Tape
Tape
Drlse # Controller
Figure 2: I/0 Alternatives.

Adding A SCSI Bus

If you have a bus-based system, you shouid have no trouble
locating an SCSI interface adapter (often called a ‘‘Host Adap-
ter”’) for your system. Host Adapters are available for nearly all
bus-based systems, including IBM PC’s, XT’s, and AT’s, and the
Apple II, Multibus, VME bus, S10¢ bus, Q-bus, etc. The new Ap-
ple Macintosh PLUS even comes with a standard built-in SCSI
port!

If you are planning to design your own SCSI interface, the
complexity of hardware and software you will require depends
on which SCSI configuration you need to use.

For the single Initiator configuration (‘‘simple SCSI"’), SCSI
bus signal timing is relatively non-critical, and can be com-
pletely controlled by software. In this case, all that is needed are
bidirectional digital I/0 lines with high current output drivers.
In addition, DMA logic is recommended, though not required.

To take full advantage of the peer-to-peer aspects of SCSI
(multiple Initiator, Disconnect/Reconnect, etc.), special cir-
cuitry must be used to implement such time-critical functions as
SCSI bus arbitration. However, now that single~chip SCSI inter-
face IC's are inexpensively available from several sources, a
fully implemented SCSI interface is easily achieved.

Single-chip SCSI interface controllers are now available from
NCR, OMTI, Western Digital, Fujitsu, and others. These
provide the entire SCSI bus interface—including the bus drivers
and receivers—in a single IC package.

Making the Bus Run

Once the SCSI bus is in place, SCSI drivers and utilities must
be used to format and operate the desired SCSI devices. If you
use a ready made SCSI host adapter, those software items are
usually provided by the host adapter manufacturer. In this case
the only problem is getting the drivers and utilities for the right
operating system, and for the desired manufacturer’s SCSI con-
troller or device.

If you are creating a custom SCSI interface or host adapter,
you will have to generate your own SCSI format and operating
software. If this is the case, you'll appreciate the technical
details to appear in the next part of this SCSI Interface
Series. B

10

NEW-DOS

The Computer Journal / Issue #23

Part 2: The Console Command Processor, Continued

By C. Thomas Hilton

Wel gang. [hate to do it to you, but I have had to make some
changes in the source code for this series. Time, Tide, And
Technology waits for no one, as they say. I have upgraded my
system to the new AMPRO® 1B CPU, and AMPRO has changed
their BIOS several times since I acquired my system. Ad-
ditionally. I have been doing a lot of work on the BIOS for my
AVS Voice Computing System for the visually impaired. It is
just too hard for me to switch back and forth between systems. I
would have liked to have screamed, *‘Stop The Presses,”’ but the
changes required are insignificant. Those of you who ordered
the support disk for this series will have received the new ver-
sion of the code, so there is nothing to be concerned about.

OLDBIOS MNEWPIOS OULDSIZE NEWSIZE

! FFFFH FFFFH a1k Lk
| BASIC IN/OQUT SYSTEM (B10S) I
. e . EEQOOH ERSAH _ My Svstem
STANDAKD CP/M D15k DPERATING SYSTEM
——— - e - .1 EfO@H DCooH My System
{ Conscle Commana Processor (CCP) l
L + DBeeH DavaIH My Svstem
D7FFH D3IFFH

Transient Program (User Program)
(Dependent Upon Amount of Memor y)
oo____! 2188H (Start o+ TFA)

BIOS and CF.-M work Area., Page lero
. (Start Of Memory)

SAVE VALUE (Pages’ a3 49
DDT OFFSET 318¢ 3s8e

Figure 1: Dual System Memory Map.

Taking a look at our revised memory map you will see where
everything is, and there are options you may install to either
leave things as they were, or upgrade your code to the current
version. There will be no differences in the discussion of the code
from version to version.

I have also enlarged the stack by three calls, or 6 bytes, to 32
bytes. Change any source listing showing a 26 byte stack to 32
bytes. This extra space is used only in complex CCP command
functions.

Moving On...

Listing One shows the code segments we have already
discussed, and as the code stands at this moment. Be sure that
you have selected the proper equate for the memory size and
BIOS you are using! Please refer to PART ONE of this series for
a detailed discussion of what this code is doing, and why.

This “code base” forms the primary CCP loop. In this
segment we will discuss the subroutines which are called by this
code base. At this point refer to Listing 2. We will begin our

LISTING 2

L]
$} reset user number 14 changed
[}

RESETUSR:

' TMPUSR EQU s+1 tpointer for in-the-code modification
Lo A, 8 $2nd byte (immediate arg) is tmpusr
LD E,A iplace in e
JR SETUSR fthen go set user

. BETUSR: LD €,0FFH jget current user number

‘BETUSﬁ: LD C, 20M tset/get user code

JR BDOSJP imore space saving

discussion with the first subroutine called, beginning at the top
of our source code, in Listing 1. The first subroutine call is made
after entry at CCP.

To refresh our memories, and having entered at CCP, we ex-
pect an Autocommand to be executed. Our first chore is to
establish a local stack for use by the CCP. The BIOS has sent us
the system drive designator in register ““C.”’ Our first concern,
after defining a local stack, is to save this system drive infor-
mation on the stack.

[
¢ wtart ccp and possibly process default command
1

cCcP: LD SP, STACK jreset stack
PUSH B8C
We then extract the user area, or subdirectory information:
LD A,C tcouser/disk nuaber (see loc 4)
RRA jextract user nuabaer
RRA
RRA
RRA
AND oFH
LD E.A iset user nuaber

CALL SETUSR

and load that information, the user area, into register “E.”
Register “E” is used as we are about to make a BDOS
subroutine call, and this information will be the parameter in-
formation passed to the DOS system. Looking at Listing 2 we see
that SETUSR is but a small portion of another set of subroutines
sharing the same segment of code. We are limited by the
amount of space the CCP may occupy. Whenever there is a
chance to save a little code, we must do so! Redundant code is
something a good programmer tries to avoid. By “packing”’
your code the program will be smaller, and will run faster,
though it may be no easier to understand either by yourself, or
others.

When the BIOS passes control of the system to the CCP the
user code and drive designation is in register ‘‘C,”” we have ex-
tracted the user code, and passed the data to SETUSR. SETUSR
now calls the DOS system and places this data into the
drive/user byte at location four, page zero, for use by other por-
tions of the system. If you find yourself confused about the con-
cept of user areas, and their storage in page zero, refresh your
memory by referring to the first installment of this series.

The section of code that we are now concerned with could have
been written as:

Lo E,A tplace extracted user area code in “E° for
1008 call

Lo C, 204 tioad function call nusber for set user code

CALL BDOS tand make the DOS call via location ftve

But, again, when we are trying to pack the greatest number of
features into a small area, every byte counts, and duplicated
code is wasted code.

While we are here, and while we are concerning ourselves
with the setting of user areas, note how the rest of this code
block is formed. Note also the trick of placing a variable position
in the space set aside for literal data. Whomever thought up this
one deserves a pat on the back!

i reset user number :1¢ changed

[

RESETUSR:

THPUSR EQU o1
LD a,s

toointer ¢for in-the—code modification
I2nd byte (1mmediate arg) 18 tapusr

The Computer Journal / Issue #23 11

LISTING 1
. H Hermit Software’'s
1 Modified CROWE Assembler
t Sogurce Code F:! @ ‘
1 (c) 198, 1966 C. Themas HMilton '
H Primary -
1 Hardware: Ampro Seri1es (8@, (A CPU
—] (Original Little Board)
] Ampro Series 196, 1B CPU
¢ (Bios 3.4)
$ System: CcP/M 2.2
] (Ampro Standard Version)
: Function: A True Z-80 Replacement Console Command Processor To: A Fm mm’
— X {. Restore AUTOCOMMAND Function To Non-ZCPR3 CP/M OPTIMIZED FOR THE IBM
] 2. Enhance Standard CP/M Console Functions
] Version Author: Thomas Hilton PE‘RSONAL COMMTR AND
; Indes : MS-DOS COMPATIBLES.
] CCP.CRW CCP Main Loop
] CCPA.CRW CROWE Chain File Containing CCP Commands
- L1sT S8TANDARD FEATURES
TITLE "CCP Main Loop’ INCLUDE'
NLIST .
1 —._ terminal and "type’ customization eguates ___
NO £Qu e @79 STANDARD
. YES EQU SFFH tconditional logic boolean declarations
OLDBIOS EQU NO Iset to YES {f not BIOS 3.4
NEWBIOS EQU YES iset to YES if BIOS 3.4 but make only one .Dmcr I/o AC@SS
ibios definition to YES, the other BIOS option
tmust be set to NO OFULL ACCESS TO MS-DOS
IF oLDBIOS FILES AND FUNCTIONS
J— AMPCCP E£QU eDeeeH tccp location for ampro series 199
BIOS EQuU CEEOOH fand version 1.X - 2.X BIOS systems .ENVIROMNT SAVE
ENDIF
IF NEWBIOS & mAD
AMPCCP EQU @D42OH tccp location for 48K Ampro 1B CPU
BIOS EQU PEAGOH tlocation for new Ampro BIOS 3.4 eMULTI~-SEGMENTED FOR
— jand my AVE voice Bl10S Version (.8 I_ARGE APPuCATIONS
ENDIF
CR EQU oDH fcharacter: carriage raturn mn ADMES ING
LF EQU AH icharacter: line feed ® ED S
TAB EQU L] jcharacter: tab
_ ESC EQU 1BH Icharacter: sscape eMEMORY AIAI-DCATION
CTRLC EQU a3M Jcharacter: control-c CONFIGURABLE ON-LINE
wBOOT EQU 20H jcp/m warm boot address
UDFLAB EQU o4 fuser num in high nybble, disk in low .A'[m IOAD G.EEN m
BDOS EQU 25H tbdos function call entry pt S
TFCB EQU SCH tdefault fcb buffer
_— TBUFF EQu SoH idefault disk i/0 buffer OLINE & SCREEN EDITORS
TPA EQU 3100 fbase of tpa
MSIZE EQU &1 jampro cp/m size .DECQ@IIER AND
CBBUFF EQU BIOS+&62H DEBUGGING AIDS
RCPM EQU NO jset to true 1f ccp is for a BBS system
NLINES EQU 24 fnumber of lines on crt screen o8 8 AS mBIER
- PBDFLG EQU *N? Ithis flag reverses the default effect 08 S
MAXUSR EQU 15 jmaximum user number accessible
SYSFLG E@U U’ $for dir command: list Ssys and 8dir MICS & m
SOFLG EQu ’s’ tfor dir command: list Ssys files only
DEFUSR EOU] idefault user nueber for com files oNGS ENHANCEMENTS
— '
. ORrG AnPCCP eDETAILED MANUAL
ENTRY: JP ccp § process potential default command
JP ccPt 3 do not process potential default command .mmmsm Ums
]
_ BUFLEN EQU 89 Imaxisums buffer length oNGS USER NEWSIETTER
MBUFF: BYTE BUFLEN Imaxisum buffer length
CBUFF: BYTE [fnumber of valid chars in command line
CIBUFF: DATA . ’ tdefault (cold boot) command A COMPLETE FORTH
CIBUF: BYTE L4 fcommand string terminator EV,
RSRY BUFLEN~ ($-~CIBUFF) +1 jtotal is ’buflen’ bytes D mpm‘ SYSTEM.
- '
! ccp startin oints
; °° e P PRICES BTART AT $70
§ start ccp and don’t process default comsand storad
]
cCcP1: XOR A iset no default command m’n-lso & n-llo
- Lo (CBUFF) , & VERSIONS AVAILABLE
1]
t start ccp and possibly process default command ‘
- 1)
cep: LD 8P, STACK ireset stack
— PUSH BC ‘
LD A,C jc=user/disk nusber (see loc 4)
RRA textract user nusber .
RRA
i MEXT GENERATION BYSTEMS
RRA
— AND r P.0.BOX 2987
LD E,A set user number
CaLL SETUSR ! “ u BANTA CLARA, CA. 95055
CALL RESET ireset disk system (408) 241-59%909
POP BC
_ LD A,C jc=user/disk number (see loc 4)
AND OFH fextract default disk drive
LD (TDRIVE) , A tset it

FORTRS-80 MODELS 1,344
IBM PC, XT, AND COMPAQ

Train Your Computer
to be an

EXPERT!

Expert systems facilitate the reduc-
tion of human expertise to simple,
Engtish-style rule-sets, then use them
to diagnose problems. “Knowledge
engineers” are developing many
applications now.
EXPERT-2, Jack Park's outstanding
- introduction to expert systems, has

been modified by MMS for MMS-
FORTH V2.0 and up. We supply it
with full and well-documented source
code to permit addition of advanced
features, a good manual and sample
rule-sets: stock market analysis, a
digital fault analyzer, and the Animat
Game. Plus the benefits of
MMSFORTH's excellent full-screen
editor, super-fast compiling, compact
and high-speed run-time code, many
built-in utilities and wide choice of
other application programs.

(Rule 1 - demo in EXPERT-2)

IF you want EXPERT-2

ANDNOT you own MMSFORTH

THENHYP you need to buy

MMSFORTH pius EXPERT-2
BECAUSE MMSFORTH is required

EX PE RT-
mmﬂan

The total software environment for
IBM PC, TRS-80 Modei 1, 3, 4 and
close friends.

¢ Personal License (required):

JR 1,NLOG

caLL LOGIN
NLOG: LD A, (CBBUFF)

OR A

JR NZ,CBPROC

LD A, (CBUFF)

OR A

JP NZ,RS81

JR RESTRT
CBPROC: LD BC,9

LD HL, CBBUFF

LD DE, CBUFF

LDIR

XOK A

Lo (CBBUFF) ,A

JP RS1

L]
$ prompt user and input command
L}

RESTRT: LD SP, STACK
XOR A
LD (CBUFF) , A

3 print prompt (du>)

cALL CRLF
CALL BETDRV
ADD A, ' A’

CALL CONOUT
CALL GETUSR

cP 19
IR C,RSe®
SuB 10
PUSH aF
LD A,
CALL conouT
POP aF
RSGG: ADD A0’

CALL CONOUT
s
§ read input line from user

i

RSO03: CALL REDBUF
3

$ process input line

RS1: caLL CNVBUF
cALL DEFDMA
cALL BETDRV
LD (TDRIVE) , A
cAaLL SCANER
caLL NZ, ERROR
LD DE, RSTCCP
PUSH DE
LD A. (TEMPDR)
ORrR A
JP NZ,COM
CALL CMDSER
JP NZ,COM
LD A, (HL)

INC HL

LD H, (HL)
LD L,A
JP (HL)

The Computer Journal / Issue #23

tskip if O...already logoed
$log in defsult disk
jis there system command to execute?

$if not zero there is a command

line from him

jreset stack

fprint prompt
fcurrent drive is part of prompt
jconvert to ascii a-p

fget user nuaber ,
juser < 197

fsubtract 18 from it
isave {t
joutput 10’s digit

joutput {’'s digit (convert to asciti)

jinput command line from user

fcapitalize command line, place ending 8, .
tand set cibptr value

iset tbuff to dma address

Jget default drive number

fset it

{parse command name from comaand line
jerror if command name contains a ’'?’
jput return address of command

jon the stack

118 command of form ’'d:command’?
jni=sves

simmediately

tscan for ccp-resident command

tnot ccp-resident

tfound it: get low-order part

1get high-order part

fstore high

fatore low ,d
texecute ccp routine

3 entry point for restarting ccp and logging in default drive

RSTCCP: XOR A
LD (CBUFF) ,A
CAaLL DLOGIN jlog in default drive

§ entry point for restarting ccp without logging in default drive

]
RCCPNL: CALL

SCANER jextract next token from command line
AHANOLER-PLUS 1
mﬂmmm 2) LD A, (FCBFN) Iget first char of token
' i suUB ot tany char?
OCorpO(ate Site License b HL, TEMPDR
oR (HL) _
® Some recommended Forth books: Jp NZ, ERROR
JP RESTRT

Shipping/handiing & tax extra. No returns on software.

“A:(szwrdubrtoshowyoumewoddof
ORTH, or request our free brochure.

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natick, MA 01780
(617)653-6138

series.

NOTE: The segments of code above are discussed In Part One of
this series. Please note the changes to allow a 68K .
system ustng the Ampro BIOS 3.4.

The code which follows 18 discussed in Part Two of this

- e e we W e W e

The Computer Journal / Issue #23

The equate TMPUSR is set to the current program counter
value, plus one. Since the current position, once assembled is the
load instruction, *‘LD,"”” TMPUSR is pointing to the position oc-
cupied by the ““0.”” Any byte that is loaded into TMPUSR will be
loaded into the ‘‘A" register in the place of the default zero
value. Such a sequence would appear as:

LD (TMPUSR)A
where we will say that ‘A’ has the value of 15. This would be the
same as saying, when RESETUSR was encountered,

| reset user number tf changed
1
RESETUSR:

THPUSR EQU s+t ipointer for in-the-code modification
LD A, 18 t2nd byte (1mmediate arg) is tmpusr
L0 E,A iplace 1n @
JR SETUSR ithen go set usar

After having defined the user area we wish the system to place
in location four, we then jump down to SETUSR.

LISTING 3

bdos function routines

return number of current disk in a

- e we s w e

GETDRV: LD C,19H
JR BDOSJP

L

t set 86h as dea address

L]

DEFDMA: LD DE, TBUFF s 8Oh=tbuf f
DMABSET: LD C, 1Ar
JR BDOSJP
3
RESET: LD C,@DH
BDOSJP: JP 8D0OS
'
LOGIN: LD E,A
LD C,0EH
JR BDAOSJP fsave sose code space

Other portions of the program, in our main loop, such as the
code portion noted below, also use the GETUSR routine.

1 print prompt (du)>)

CALL CRLF
CALL BETDRYV

Iprint proept
fcurrent drive is part of¢ proast

ADD A, TA jconvert to ascii a-p
CALL CONOUT

----- > CalL GETUBR jqet user nusber
cP 19 juser < 18?7

In this example we need to know what the current user area is
so that we can display it in the ““AX >’ prompt, where X"’ is the
current user area.

DOS function 20H, used when we jump to SETUSR to load the
“C" register with 20H, is one of CP/M’s dual mode function
calls. If we put FFH in register “E” the current user number
will be returned in the ‘A" register. If a value other than FF is
placed in the “E’’ register, that value will be set, by BDOS, as
the current user area. FFH serves as a “flag”’ to determine
which function, set the user code, or return the user code, the
DOS routine is to perform.

GETUSR: LD E,0FFH iget current user number
SETUSR: LD C, 200 Inat/or get user nuaber
JR BDOBIP ImOre Space Saving

After any of the above conditions we do a jump to a common
BDOS handling routine. The symbol BDOS has been defined to
represent location five, in page zero. This actual code is shown
at the bottom of listing 3, as:

BDOSJP: JP BDOS

Moving down our primary source loop to the next subroutine
call, we find that RESET is our next victim.
Having changed the user area code, we now have to be sure

13

that everyone is aware of the fact, as all portions of the system
must work together, if the system is to work properly.

RESBET: LD C,80H
BDOSJP: JP 8008

The RESET function, DOS function 13, restores the file
system, and directory, to a read/write condition, selects drive
“A" as the system disk, and redefines low memory variables.
The default DMA buffer, used for all disk input and output, is
reset to 0080H.

You may note that we have been concerned only with user
areas to this point, not the drive designator which occupies the
lower four bits of the drive/user byte. With this call we set the
system to its default state, a fresh start, but with the BIOS
defined user area. At this time I should note that CP/M doesn't
really care about user areas, it only ‘tolerates’ this byte.
Therefore, everything we want to do, which concerns user
areas, we must do ourselves, if we want it done right.

Following our primary CCP loop, to the next subroutine call
we see that the next thing we do is get back the disk/user
specification byte sent to us by BIOS, which we ‘‘pushed’’ onto
the stack. At this time we are ‘‘logged into’' disk drive “‘A’’ and
the user area given to us upon entry to the CCP.

POP 8C
Lo A.C tcouser /disk nuaber (see loc 4}
AND OFH textract default disk drive
LD (TDRIVE) ,A tset it
JR 1,N.00 inkip 1¢ O...already logged
CALL LOGIN 1log in default disk
NLOG: (W) A, (CBBUFF) iis theve systee command toc execute?

Disk designators are not defined by letters, but by numbers.
The letter designation is something purely for human consum-
ption, whose reason is unknown to me. Perhaps I am not smart
enough to use numbers, I don’t know, (sigh). Figure 2 shows the
internal designation table for disk drives.

#0H = DRIVE A
#IH = DRIVE B
@2+ « DRIVE C BAM = DRIVE K
@3+ = DRIVE D 2BH = DRIVE L
B4H = DRIVE £ #CH = DRIVE W
3K = DRIVE F
B6H = DRIVE G
@7+ = DRIVE M

88+ = DRIVE 1
@9H a DRIVE J

SDH = DRIVE N
#€EH = DRIVE O
OFH = DRIVE P

NOTE: The upper four bits, represented by & "$" 1n the above
tiqure 1s whers the user area code 18 storwed.

Figure2

In any event, we get the byte back off the stack, and perform &
logical AND upon it. I am assuming that you know how a logica.
AND works. Since the upper nybble of the operator is a zerc
value, in hex, the user code is stripped off, not included in the
resulting value. The ‘“F"’ value, or 16 decimal, is large enough tc
permit the total number of disk drive designators in Figure 2 to
pass through this boolear function.

When this logical operation is performed against the
drive/user byte certain Z-80 flags are set. If the disk drive num-
ber is other than a zero value the zero flag will not be set. While
the flag will be set at the time the operation is performed, we do
not want to act upon it at this time.

Before we act upon the logical AND, we want to store the
default drive value for later, internal use. We do not want to
bother BDOS any more than we have to. It resets more values
than we want changed. We therefore store this value in a tem-
porary drive register, which is no more thanf memory location
set aside for the purpose. This is how variables are handled in
machine language.

If the value of the drive sent us was a zero value, which Figure
2 tells us is the normal ‘A’ drive, we do not have to log in a new
drive. In this case we jump over the call to LOGIN.

14

In the event that the BIOS has specified that we begin, and
always return to, a drive other than drive ‘A’ then the ““Z" flag
will not be set, indicating a nonzero result of the logical AND
function. If this is the case we must then assign the specified
disk drive.

LOBIN: LD E,A
LD C, 9EM
JR BDOSJFP Isave some code space

The log in function is accomplished by loading the value left in
the “*A’ register, from the AND function, into the “E” register,
and calling BDOS function 14.

BDOS function 14 is the *“SELECT DRIVE” function. When
this function is called, the selected disk drive, represented by
the number in register “‘E,” is placed in an *‘active’’ mode. The
.current directory information is discarded, and the new direc-
tory information from the specified drive is loaded into
memory. As we have already defined the user area, the direc-
tory information acted upon by various programs will return
only those programs whose directory code represents the
current user area.

We have placed the system on-line as per our instructions
from the BIOS. Having done all of this we now check to see if
there is an Autocommand function to be executed. As might be
inferred, (I heard that guy in the back!), yes, it is possible to
boot to a drive other than drive *‘A.”" All that is required is to
place the desired disk and user area into register ‘‘C,”” and jump
into the CCP! It’s not my fault no one told you this before!! The
system must know where to get the DOS and CCP from the disk,
but once loaded no one really cares all that much.

Several of the other subroutine calls in the main loop also
make BDOS calls, which are also shown in Listing 3. These are
relatively simple functions, which I will allow you, the reader, to
explore by yourself. At this sitting we have a great deal more to
discuss, of higher priority, so we must move along quickly.

LISTING 4

4

} output char 1n reg a to console and don’t change bc
§

t output <crléf>

3

CRLF: LD A,CR
CALL CONOUT
LD A,LF tfall thru to conout

$

CONQUT: PUSH BC
(] C,@e2H

QUTPUT: LD E,A
PUSH HL
CALL 8DOS
POP HL
POP BC
RET

Listing 4 presents the basic character output routines called
by the section of the main loop concerned with printing the
prompt, at segment:

1 praint prompt (du>)

CALL CRLF tprant prompt

CaLt BETDRV jcurrent drive 18 part of prompt
ADD A,"A" fconvert to ascil &-p

CALL CONOUT

CALL GE TUSR Iget user number

The first thing we want to do is clear a fresh line to print the
“A0>" prompt upon. CRLF does this for us, using CONOUT, the
generic ‘‘print a character’’ subroutine. BASIC programmers
should note that the expected carriage return/line feed sequen-
ce is not automatic at the assembler, or machine language level.
No one at this level of the system is going to take the blame for
printing any character it isn’t supposed to. The ruling concept is
to expect nothing, take nothing for granted, and specifically
define exactly what must be printed. “'If youdon't, it won't.”

-
" Little Board™....$249

The Worid's Least Expensive CP/M Engine

CP/M 2.2
INCLUDED

® 4 MHZ ZBOA CPU, 64K RAM, Z80A
CTC, 4-32K EPROM

® Mini/Micro Floppy Controlier
(1-4 Dnives, Single/Doubie Density,
1-2 sided 40/80 track)

® 2 RS232C Serat Ports (75-9600 baud

system with ZCPR3
® Read/wnite/format dozens of
floppy formats (18M PC-DOS,
KAYPRO, OSBORNE, MORROW . }
® Menu-based system customization
¢ Operator-fnendly MENU shetl

& 75-38, 400 baud), 1 Centronics ® OPTIONS

Printer Port ® Source Code
i ® Power Requirement: +5vDC at .75A, ¢ TurboDOS
| +12vDC at .05A / On board - 12V ® ZRDOS
I converter ® Hard disk expansion to 60
megabytes
® Only 5.75x 7.75 inch ts
e o 1T e oun ® SCSI/PLUS™ multi-master 1/0
expansion bus

¢ Comprehensive Software included
® Enhanced CP/M 2.2 operating

® Locat Area Network
® STD 8us Adapter

BOOKSHELF™ ... oo

Fast, Compact, High Quality, Easy-to-use CP/M System

Priced from
$895.00
10MB System
Only $1645.00

o Comprehensive Software inciudea

® Enhanced CP/M operating system
wath ZCPR3

® Word processing, spreacsheet,
relational database, spelting
checker, and data encrypt/
decrypt (T/MAKER Il -

o Operator-frendly shells, menu,
Friendly™

® Read/write and format dozens of
floppy formats (i8m PC-DOS,
KAYPRO, OSBORNE, MORROW . !

® Menu-based system customization

® Ready-to-use professional (P/M
computer system

& Works with any RS232C ASCIt
terminal (not included)

® Network available

® Compact 7.3 x 6.5 x 10.5 inches,
12.5 pounds, ali-metal construction
® Powerful and Versatile:
® Based on uttie Board
single-board computer
® One or two 400 or 800 KB floppy
drives
® 10-MB internal hard disk drive
option

DISTRIBUTORS

|

|

‘ ARGENTINA: FACTORIAL, SA_ (1) 41-0018. MICROCOMPUTERS, (613" 500-0628

5 TLX 29408 BELGHRMA: CENTRE BRAZK: CNC-DATA LEADER LTDA

| ELECTRONIQUE LEMPEREUR (041, 23-454! (41" 262-2902. TLX 041-0364 DENMARK:

i TLX 42621 CANADA: DYNACOM? DANBIT 1031 66-20-20 TLX 43556

] COMPUTER SYSTEMS UD, ‘6047 8727737 FINLAND: SYMMETRIC OY. (0] 585322,
ENGLAND: QUANT SYSTEMS, TLX 121394 ISRAEL: ALPHA TERMINALS,
(01! 253-8493, TLX 946240 REF 19003131 D, (3. 48-16-95 TLX 341667 SWEDEN:
FRANCE: EGAL-, (1 5091800 TLX 620893 AB AKTA, (08: 54-20-20 TLX ' 3709 USA:

CONTACT AMPRO COMPUTERS INC |
| TEL 1415) 969-0230 TELEX 4940309

SPAIN: XENIOS INFORMATICA, 563-0829,
TLX 50364 AUSTRALIA: ASP

t 18M* 18m Corp . Z80A - iog ¢ (P M
; Draital Researcn ZCPR3 ~ & ZRDCS *

AVIR0]

Ecneion in¢ Twroo DOS* Software 200C

| COMPUTERS NCORPORATED

NC T MAKER i1 " ~maxer (o
NS 67 EAStEVEIYN Ave + MOUNLAIN View (A94041 « (4151962-0230 » TELEX 4940300 J

The Computer Journal / Issue #23

1 output char 1n reqg a to console and don’'t change bc
[
i output ‘crlf:

)
CRLF: LD A,CR

CALL COoNOUT

LD A,LF téall thru to conout

To present the *‘cursor back to start, and scroll a line,” fun-
ction we first load a RETURN into the ‘A’ register and call
CONOUT as a subroutine. We then reload the ‘A" register with
a line feed, (CR and LF equates at head of Listing 1), and ‘“‘fall
through’’ to CONOUT, returning to the caller from CONOUT.

CONOUT: PUSH BC

LD C,32H
OUTPUT: LD E£,A
PUSH L
cALL BOOS
POP HL
POP BC

The operation of CONOUT actually requires very little ex-
planation. I would make note of the fact that all user registers
not actually used by the current routines are saved upon the
stack. This is done because most DOS systems, who in turn call
the BIOS, do not take the time to save the users registers. They
do not return them to the caller with the same values they had
before the call. I have said it a thousand times, and I will repeat
it here, “SAVE THOSE REGISTERS!'” In doing so you will
save yourself a great deal of grief.

Moving right along, locate the following section of code from
our main source loop:

j read 1nput ltne from user
:zsan: cAaLL REDBUF

'
§ process i1nput line

1i1nput command line from user

]
RS1: CALL CNVBUF

At this point we are ready to input a command from the
operator. Make note that we have printed the disk drive
designator, “A,” and the user area, ‘‘0,”” which forms the
familiar ““‘A0> " prompt. Note also that we have not yet printed
the *“> "' character. We shall print the remaining portion of the
CCP prompt as we prepare to get input from the console.

See Listing 5.

4 1nput next command to ccp
'

REDEUF @
RB1:
CALL SETUD iset user and disk
LD A,
CALL coNnouT
LD C,0AM {read command line from user

LD DE , MBUFF

CALL BDOS 1and fall through to SETUSD

The first thing we want to do is save the drive and user data,
as it stands at this moment, before any command is accepted or
acted upon. These functions are performed by SETUD.

i set user/disk flag to current user and default disk

L
SETUD: CALL GETUSR Iget nuaber of current user
'

ADD AA Iplace it in high nybble

ADD AA

ADD AA

ADD AA

[%:] HL, TORIVE imask 1n default drive nusber (low nybble)
oRrR (HL) tmask in

Lo (UDFLAG) , A iset user/disk nusber

RET

Once these functions of saving the current drive and user
area, internally, are performed we are ready to input our com-
mand line from the operator. We print the ‘>’ character via
CONOUT, and then set up the system to do a BDOS Function 10
call. DOS call 10 is the “read a line of text” function. This call
requires that we define the maximum number of characters
allowed in the input line, and where this line of text is to be
placed. It has to go somewhere! The parameters for this fun-
ction are defined at the top of our source program. This ‘‘bui-
fer,” or place to put the console command is located at CCP +6.
For a full discussion of this location please refer to PART ONE
of this series. Again, the set up for input of a command line is:

Icapitalize command line, place ending @,

15

Lo C.oaH
LD OE , MBUFF
cacL 800S

iread command line ‘rom user
tand fall through to SETLAD

Note below, that MBUFF contains the maximum number of
characters the command line may receive. MBUFF+1, or
CBUFF will, upon return of the DOS function, contain the num-
ber of actual characters in the command line. DOS function 10
will return only when a carriage return is input, to signify the
end of the input string, or when the maximum number of
characters defined in MBUFF has been reached.

BUFLEN EQU 8@

MEUFF ! Ry TE BUFLEN
CRUFF: BRYTE a

tmaxiaum buffer length
imaxious buffer lengthn
fnumber of valid chars 1n zommand line
CIBUFF: DRATA idefault 1cold boot) command
CLEBUF: KYTE [tcommand string terminator
RSRV BUFLEN- «8-CIBUFF:+1 1total 1s ‘buflen’ bvtes

The remainder of this code defines, for the assembler, the
space to be reserved for this buffer, and its terminating null, or
zero value character.

When the input command line has been placed in the com-
mand buffer, CBUFF, the code then drops into SETUOD, which
sets an internal register.

iset current diek number 10 lower pDarams set user/disk flag to user @
iang default diek
SETUAD:

TDRIVE EQU LR} tpointer for 1N-the-code modification
LD A, 12nd byte (1mmediste arg’) 1s tdrive
LD (UDFLAG) . A iset user/disk number

REY

Having received the input command line, and taken care of a
little housekeeping, we now must concern ourselves with trying
to make sense of the data sent to us by the operator. This is not
always an easy task. Our first task is to convert the data into a
generic, universal format. In this system all terminal input is
converted to uppercase characters by CNVBUF.

i process 1nput line

'
RS1: cAaLL CNVBUF Icapitalize command line, place ending &,

In addition to converting the command string into all upper
case characters, CNVBUF assures that there is a terminating
null at the end of the command. This terminator is just one more
way to tell when we have reached the end of the human’s
demands of us. The computer does not understand human
speech. We must find a way to simulate understanding. The
conversion to upper case is the first step in this process.

| capitalize string (ending in @) 1n cbuft and set ptr for parsing
[

CNVBUF: LD HL,CBUFF 1Ipt to user’'s command
LD B, (L) tchar count in b
INC B tadd | 1n case of zero
cB1: INC o tpt to ist valid char
Lo A, (HL) tcapitalize command char
CAaLL UCASE
LD ML) A
DJNZ CB1t fcontinue to end of command line
CcB2: LD (HL) @ istore ending <null)>
LD ML, CIBUFF iset command line ptr to 1st char
LD (CIBPTR) ,HL
RET

The conversion process begins by setting a 16 bit register to
point to the beginning of the command character string.
Remember that CBUFF, upon return from DOS function 10,
contains the actual number of characters returned in the com-
mand line. We set this value in register “‘B’’ so that we can use a
powerful command of the Z-80 command set, Decrement and
Jump Not Zero, or DJNZ. This command is unique to the Z-80,
which is why sane people do not use an 8080 assembler on a
machine using a Z-80 processor, though some peopie do try...

Having set the number of characters in “‘B" and having ad-
vanced the ‘‘HL'’ register, serving as our ‘‘pointer,”’ to point to
the first valid character in the command line, we now load the
“A” register with that character. With the command character
in “A” we may now call UPCASE, who converts the character,
if required, into uppercase format.

16 The Computer Journal / Issue #23
LISTING S
]
§ input next command to ccp
]
REDBUF :
RB1:
CALL SETUD jset user and disk
Lb A’ >’
CALL CONOUT
LD C, #AH jread command line from user
LD DE , MBUFF
CALL BDOS jand fall through to SETUSD
iset current disk number in lower params set user/disk flag to user &
jand default disk
SETUED:
TDRIVE EQU .+l jpointer for in-the-code modification
LD A,0 12nd byte {(immediate arg) is tdrive
LD (UDFLAG),A jset user/disk nuaber
RET
'
§ set user/disk flag to current user and default disk
§
BETUD: CALL BGETUSR jget number of current user
ADD A,A jplace it in high nybble
ADD AR
ADD AA
ADD A A
LD HL, TDRIVE imask in default drive number (low nybble)
OR (HL) imask in
LD {UDFLAG) ,A fsat user/disk number
RET
$
s
$ capitalize string (ending in @) in cbuff and set ptr for parsing
]
CNVBUF: LD HL, CBUFF Ipt to user's coasand
LD B, (HL) fchar count 1n b
INC B fadd | in case of zero
CB1: INC HL jpt to lst valid char
LD A, (HL) jcapitalize command char
CALL UCASE
LD (HL) ,A
DINZ 3} fcontinue to end of command line
cB2: LD (ML), 0 §store ending <null>
LD ML, CIBUFF Iset command line ptr to ist char
LD (CIBPTR) , HL
RET
]
) convert char in a to upper case
'
UCASE: CP 3L] | lower —case a
RET c
cP 7BH jgreater than lower-case z°?
RET NC
AND SFH fcapitalize
RET
1 convert char i1n a to upper case ch2: (8] (HU) 0 jstore ending <null>
i Lo M, CIBUFF iset command line ptr to 1st char
UCASE: CP 41K jless than lower-case a? LD (CIBPTR) , ML
RET c iyes, 80 leave 1t alone RET
cp TBH tgreater than lower-case 17
RET NC lves, 80 1gnore 1t as well
AND SFH jcapitalize

RET

1 will leave the process of the actual conversion to upper case
routine to you, the reader, to explore. Get out your ASCII code
chart, and keep in mind the actual hex code value of all lower
case characters, and the function of the logical AND.

We now repeat the incrementing of the pointer, converting of
characters to upper case, and the decrementing of the character
count until the character counter reaches a zero value. This loop
has been brought to you by the good folks who gave us DINZ, the
programmer’s friend!

When the “B’’ register zeros out we fall through into CB2, who
places the ending null character at the end of the string as noted
by the, “number of characters in the line” indicator, not the
number of characters that could have been in the line. In this
way we do not try to interpret random trash that may fill a
command line with less than 80 characters. Yes, I know other
CCP programs allow longer command lines. I thought
meaningful error messages were more important. The normal
CP/M SUBMIT function is not implemented in my CCP. Why?
Because I never use it. I prefer EX14.COM or other submit type
programs that do not erase the submit file when they are
finished.

Now we have everything set into a universal format, and are
ready to try and figure out what those upper case characters
mean! But, before we can get to the ‘‘good’’ stuff we have set the
DMA address to be used in any upcoming function:

| set A~ as dma address
[

DEFDMA: LD DE, TBUFF 190h=tbué s
DMASET: LD C,1AH
JR BDOSJIP

Even though RESET has set the default DMA buffer for all
disk in/out to 0080H, do you REALLY trust BDOS? I don't, and
something may have changed if we have executed an internal
CCP command. Since I will never take anything for granted, nor
assume a thing, let's reset the DMA buffer, OK? Call me
paranoid if you want! Idon’t care!

The next thing we have to do is store everything we have done
thus far, because it is almost certain that we will be leaving the
CCP for awhile, real soon.

CALL GETDRY fget default drive number
Lo (TORIVE) ,A iset 1t

From this point we check to see if the user has input a com-
mand to only change a drive, or wants to get a file from another
disk drive.

The Computer Journal / Issue #23

A Little Homework

TCJ is a bimonthly magazine. I am taking far too long in
discussing code that we will be using over and over again. There
are other, important, functions I want to cover in this issue. If
you have been following me thus far you are ready to strike out
and do some work on your own. Of all the segments I considered,
the SCANER code segment, in Listing 6, is the one I feel you
would benefit the most from exploring yourself. I had to cut
back somewhere, and this code, while it looks complex, contains
groups of rather elementary routines, and is well documented. I
would recommend, as reference works, the CP/M manual from
Digital Research, and Ampro, and/or:
INSIDE CP/M, A GUIDE FOR USERS AND PROGRAMMERS

By David E. Cortesi
CBS COLLEGE PUBLISHING
383 Madison Avenue, New York, NY 10017
ISBN 0-03-059558-4

17

‘When next we meet you will be expected to understand the
functioning of the following code segments taken from the main
loop:

caLL SCANER
CaLL NI, EFROR

iparse command name from comma I .. .re
l@error 1§ command Name ZONtai & 3

Another reason I do not want to spend a great deal of time on
the SCANER code is that this is a three part series to make you
feel comfortable with the CCP’s internal workings. The first
three parts serve no other real function, though the CCP is quite
usable. In later portions, when we begin modifying the under-
stood CCP, it is doubtful that we will be using the SCANER code
system.

Meanwhile, back at the bit works, if SCANER detects an
error, based upon the *‘Z’" flag, which is used for the purpose of
telling the caller an error has occurred, we jump out of the loop.
Control is then passed to the ERROR routine, and the CCP is

LISTING &

1f *?° is in token

entry points?

SCAN4: XOR A jam@
LD (@QMCNT) , A
tD 8,8
caLL SCANF

LD B,3

cP t.t $if
JR NZ,SCANLS

INC DE

CALL SCANF

JR SCAN1 &

SCAN1S: CALL SCANF &

LD (CIBPTR) , DE

extract token from command line and place it 1nto fcbdng
format fcbdn fcb if token resembles file name and type (filename.typ)
on input, cibptr pts to char at which to start scans
on output, cibptr pts to char at which to continue and zero flag (s reset

scaner - loead token into first fcb
scanx - load token into fcb pted to by hl

ipoint to fchdn
Iset temporary drive number to default

jekap to non-blank or end of line
iset ptr to non-blank or end of line
jend of line?

jconvert possible drive spec to number

jstore number (aiwd, b:=], etc) Iin b
jpt to next char
Isee 1if it ims & colon (@)

jyes, we have a drive spec

fnow try a semicolon

we have a drive spec

back up ptr to first non-blank char
jset ist byte of fcbdn as default drive

jwe have a drive spec
jset temporary drive
jset ist byte of fcbdn as specified drive
ipt to byte after ":°

S8CANER: LD HL ,FCBDN
SCANX: XOR A
L (TEMPDR),A
CALL ADVAN
LD (CIPTR) ,DE
LD A, (DE)
orR A |O=yas
JR Z,38CANZ
SBC R,"A’ -1
LD B,A
INC DE
LD A, (DE)
cep e’
JR Z,8SCAN3
cpP i
JR Z,SCAN3 }yas,
DEC DE ino,
SCAN2: LD A, (TDRIVE)
LD (HL) , A
JR SCAN4
SCAN3: LD A,B
LD (TEMPDR) ,A
LD (ML), B
INC DE

§ extract filename from possible filename.typ

1init count of number of question marks in fcb
tmax of 8 chars in file name
t1$il1 fcb file name

§ extract file type from possible filename.typ

jprepare to extract type

(de) delimiter is a '.’', we have a type
$$111 file type bytes with <sp>

fpt to char in command line after '.°

§£ill fcb file type

jskip to next processing

fspace fill

3 $ill in ex, sl1, 82, and rc with zeroes

SCAN16: LD B, 4 14 bytes

SCAN17: INC HU tpt to next byte in fcbdn
Lo (K, 8
DJINZ SCAN17

'

{ scan complete —-- de pts to delimiter byte after token

The Computer Journal / Issue #23

18

uibo] ®s038q EUOP BG N 8B

d32 Jawisesy L¥183 dr
JTuM3
®nujjuod| ZHd3 or
IXeY 03 3Idi ™ N1
23d 8by W d0d
4wyD pURWWOD Jufady LNONDD W3
4UYD PUBWWOD IO L8 O3 430 sAwst W H8Nd
a3tz uce
@ #V doog 4o Ino aby v 80
HH3°2 e
@dwdas ;7 doo| 40 InO ab¢ HOZ d2
Je4y> by (S 210 an 1Zud3
SUI] puswwod ;o0 Bujuuyrbeq o3 3di (MLdID) * W an
@ 31A8 i . +0 SweN Ag punoy PURWWO]) 40 STT1J4 ON, viva
ebvesow Juyadg J1d8AS WD HOMM3
]
IV JUFAd —— PURPWWOD PIlwAUY §
]
139
4 13
ABI W (OP=, 5,0 PR 42
z 13y
ELERL AR J-T DI | PR d43
z 139
483IWL (8P, ", ¢ e 42
4 13y
483IIWE (8P =, | o= 42
4831w 18pPe(de)t z 139
¥Ou¥3 ‘D ur
@IVdN ¥ URY} BES] 4§ SOLISY « o dd
b4 138
48)jwilepep i v ¥O
(3 ‘v a1 :w3as

]
388 Dol OseZ/m IB. ‘OS 47 J48IIWITEP OF 83d @p ;1 eas O3 yIeyd §

ANYIES or
3a ONIT
IN 13y
dJ
134
30
am ‘v an dNvEs
]
(Ue%03 jo Butuuibeq) pa.ejzunolue Nue Q-uou IO [
bujuiys so pus Tyr3un (@ Ut spus Butuys) @p AQ 03 payd Butuys dixgs §
]

«

LN

(Mid812) ‘30 a1l INvAQY
]
an3
1]
HeUUEDS USNO} Q33 4Oy JUNOD Huew uoiIsenbt] 3428 DINOWD

pee@.s 403 JIUNOD Jeydt
abed uo ;o1 seuUTTY
48QENU PIODS S JUSIINDE
dew dnoJub xymypi

JunoD paodeJt

Zs pue s}

4BQUNU JUSIXE

adAY} @111

swey B1144

LIV RY-Y]

? 3148
irg

' AYBY
91 NdSH
1 NYSH
Z NHSYH
4 AYBY
£ A4BY
8 AUSY
' NS

SANDMHD
¢ ANJONV A
e - e F]
‘Wag0d

e -E
iN4804
sNQgD 4

1

X301q [OJ43UCD @1} PurwwODd |

L. BrOIBY
I+ M U UY sLRYD ;0 aeqenui

IUNOD INdy
JIuaws UL |
Junod Jeby

<de> Yy m Jaed sWeUS [t TIT4t
upqQds Ut 83AqQ Ixeu 03 33d¢

883AQ qQ 403 sEOwds yIIm Yy A

SUT| PURWWOD UT JPYD IxBuU O3 33di
puUnos Jajiwilep ;1 Jes beyy oumzy
JBJIWITEP [1IUN dINE - 8UOw 4O BJaeyd g

pasde(a § TIIUN JUNOD JEYD JUSWEIIEPS

S Jew UOIIEEND JUNOD Jeuueds |
(P1tmM) yaew uojIsendb 403 }oeydy
SUI] PUTWWOD UL JPYD IxXBU O3 3Idt
UpQl4j UI JEYD BWERUB[1S BI0}IS |

sy iew UOIIBENb JUNOD usuuede |

O8 41 8p 8aJURApE 3} ,UOpP pue uUpPQdj ut ., ederdy
JOU 43 SNUIUODY

LPJeD plimM ® (8p) BIY

uUpPQl4 Ul B3IAQ INEU 03 3di

1153 (t8) ~ pesJajunodus Je3IWI(8p 37 euopt

4e3twiep Dujjwuiwie) O3 s30 ep

4O SpJed plIM Jeudisiul pue puedxe §iy AQ O3} pejyd PISBTs sweu ety

O3uy 3}t @De|d 1883AQ G 4O Xxwew ® JO4 8P AQ 03 pe3d UeNO} UEDE —— jueds
13
e Auw @jeatpur 03 Bei; ouez Jes| (-} -1
ayJsew uoisand ;0 Jequnu jeby CLNOWD) ‘v an

13¥

d4704 INCa

™ INI
M al
11¢a al

d04
H-RalE]
'

. YITM O TY 3® adp (1Y
'

134

' (LNIWO) al
Y INI

CLNDWHD) ‘v al

A4jue Q23 JIUBIIND 8Y)
Ul sxRJew ucIIsenb ;0 LEQWNU BY} SO JUNOD BY)} BIUSWEIDUT SUTINOI B IYY
4BUUEDE JOj JUNDD NJeW UCTIsenb Juawauduly

13y

¥ NVIS INCd
FEPAE &) an
™ ONI

qQ ©3} pejuiod Asowew

€ ANYIS ue
3a ON1

b4 13y

W33 e]
INYIS INra
vaIs‘t jaln o]
i 42

E] INI

v OH a

Z 43S e
0Js 1o
RN T al
T4ANYIS * IN Ty
., o2

R INI
YINYIS ‘2 oC
W13as vl

fITx® vo §.., pue

028

Sy INYIS

trvy

SEANYIS

1ZNVOS

: 1INYIS

: ANYD!

"

- ol

dAy sweus(y} ut ... 30 sduasa.d ajedIpuy 03 bBels Duez EL L]

panuijuod g unsiy

The Computer Journal / Issue #23

restarted in the hopes that the human can get it right this time.
Failing dection of a drive/user type command, we fall through
into the following code.

LD DE.RSTCCP tout return address cof command
PUSH DE ion the stack

LD A, (TEMPDR) tis command of form “dicommand’ ™
or a tnzeves

e NZ.COM timmediatel v

I must digress a bit, though I am assuming that previous
discussions have armed you to the point where you may proceed
without my help, and discuss the way subroutines are handled.
Whenever we issue a CALL instruction the current program
counter value is placed upon the stack. This value indicates the
16 bit address which is to serve as the *‘way home’’ when a RET
instruction is encountered. The RET instruction takes the first
two bytes from the top of the stack, and assembles them into a 16
bit address. It assumes this 16 bit number is the way back to the
caller of a subroutine. It would follow that if the stack becomes
filled with garabage and a RET instruction is executed, the
program will go into high orbit, or just insane. We must always
pay attention to what is on the stack, and that it is always poin-
ting to the proper data at the proper time.

This knowledge also allows us to simulate the function of a
CALL instruction for our own purposes. This is what the code
below actually does.

19

Lo DE.RSTCCP
PUSH DE

Itout return address o+ command
ion the stack

As it is almost certain, unless our human has input some real
trash, that we will either be executing an internal CCP com-
mand, or executing a user program. In either event we may
return to the CCP instead of doing a ‘‘warm boot.”” What the
code above does is place the address of the ‘‘ReSTart the CCP”’
routine onto the stack. This is done by loading the “DE"’ register
pair with the address and pushing it upon the stack. Whenever a
RET instruction is encountered, in our internal CCP commands
or perhaps a user program, the address of RSTCCP will be the
return address, not the code segments following the initial jump.
How we make the call we will discuss in a very short time.

LD A, (TEMPDR) Tis command of farm "dicommand’ "
orR A tnr=ves
JP NZ,COm t1mmedi ately

Having prepared for an execution jump, not a call, but a jump,
we now check to see if there is a command that requires us to
fetch a program from another disk drive. If the temprorary
drive register is any value other than drive ‘A’ there is no use
continuing our guessing game. We do a direct jump to the com-
mand file handling routine, shown in Listing 7.

LISTING 7

'
§ com file processing
i

com:
LD A, (FCBFN)
cp [g
JR NZ,COomM1
Lo A, (TEMPDR)
OR A
JP Z,RCCPNL
DEC A
Lo (TDRIVE) ,A
CALL SETUSD
CALL LOGIN
JP RCCPNL
CcomM1:
L A, (FCBFT)
cP v
JP NZ, ERROR
LD HL , COMMSG
LD DE,FCBFT
LD BC,3
LDIR
CALL MEMLOAD
RET NZ

]

CALLPROB:
CALL DLOBIN
CALL SCANER

LD ML, TEMPDR

PUBH HL

LD A, (HL)

LD (FCBON) , A

LD HL, FCBDN+10M

CALL SCANX

POP H

LD a, (HL)

LD (FCBDM) ,A

XOR a

LD (FCBCR) , A

LD DE, TFCB

LD HL, FCBDN

LD BC, 33

LDIR

LD HL,C1BUFF
coMa:

LD a, (ML)

OR A

jany command?

means command was "d:’ to switch
tnot <sp>, B0 must be transient or error
tloak for drive spec

tif rero, just blank

fadjust for log in
iset default drive
fset drive with user @
tlog in drive

jrestart ccp

tfile type must be blank

fplace default file type (com) into fcb
jcopy into file type
13 bytes

fload memory with file specified in cad line
jreturn (abort) if load error

$ callprog is the entry point for the execution of the loaded
! program on entry to this routine,
[} address of the progras (subroutine) to exescute

tlog in default drive
jsearch command line for next token
isave ptr to drive spec

feset drive spec

fpt to 2nd file name
Iscan for {t and load it into fcbdne+ts
jset up drive specs

jcopy to default fch
tfrom fcbdn
iset up default fcb

fskip to end of 2nd file name
lend of line?

hl must contain the execution

The Computer Journal / Issue #23

20

AINTSBPH>POTHII0AS J} BATIP FIINWEP U DO Pur SATIP PET)IDEde 40
o8 mam30 uiBoy ops <00 e

z 134

SATID NIOYDH 90" W00 WD

v * (NQED D) a

BATIP JIINEIBP 40) UPQD JNB Y -] HOX
N ap Jou 33 UT 3T BOL pue BAjup paTIdeds 103

134

beis Imey v ¥0

40408 8IVIIPUT O} DMBI-UOU JBB{ 1% al
31A8 | ,iPw0o) 0] B1g cO;5 @[V, viva

J148A8 TwI

®IBYD

:NIBDM

n3ey> ¢

20448 peoy §

@u4d O3 NIYY [V} BN ‘0482 37 NOI 1 L3
838 10wod pwott o 320
SEM
t
W™ e
14 Uy 203388 Ixeu 03 3di o e] aav
403388 sed s83Aq @ZF sAowi 8z1'3a an
L4O8 IO SOuIm pes.t SW2IN ur
403288 IXSU O sseuppe Jabf ™ d0d
GYAS WO
403788 IxeU peaut Ngad4°'30 al
PEO] 4O} wsEIppe wwp 88| 138w W)
op uy “°-g w'aa X3
4OIIGN IXKSU 4O BNBSIPPE BARSE Y] HSNd
o8 7 Jossed ANYG D Ely
LAIONEw pBUTIEP 4O JO} IV BM esuef H 42
sbewd jutod Asjue goog 8Bt dIINMY “HOIH " 'y ai ZW
PRO| AJOWSW ;0 RSBIPPY FJuwIN a8 Ydl WM al ST
]
PROY YIim peed0.Ud ~- puUNOy @1ty §
L]
YW e
1P BATIp Idm(est | 5 71 al
I® ABYP Apeas(w 33 4Osumg W03 “ IN dr
(W) O
Omw v ¥OX
PUPWWOD JUBLIIND WOss BATIp Jaby a3l '™ an
H -]
]
POIDB[aN AT(WUIBYII0 Bem I[NWIEP 3t @ BATIp IDejes O3 SUIINO I sOLsE §
]
usebe A4y puwy YW qe
48Qunu sasn meu jes oby ¥8NL3IB TWO
v'3 ad
SUQ MEU UMOP INd eB e} v (NSNI3BL) al
+3 dwnf [o M4 ur
Lowes ¥BN43G dJ
SIQW I IPA BPOD-BYI-UY Niww} 1+8 No3 ¥8nN13s1
sa8n j[nej;ep a6y ¥SN430 'y al
SIQE I IeA BSPOI-BYI-UL NIew] T+e 3 uSNIa
]
SlI®) @818 [[¥ ;) 9 JESN IIB[ES O} BUIINOI JOLIe |
1]
3% PPO) - puUNO,y B113) TY W IN ue
®(11) OO ' PUPWNOI LBDD § NS0 RR -]
AUS 4t @At Lp PeIsIdede us DO NIBOS Tw)
B2]
. 1
IGNBIIT PUCONS ¥ L0, PoIJa1es 8] w BATUP ‘Bwyy EL YN]

U3 pUNAy 0V B} BF1y (IS0 JO) WOD' BYI UBYM 404 JUIOD UINIEL BYL B $IY3 3

UOIITI) S TPOW W/CDD PUPPURIB_UOU ® 10) JUI0D AUJUBeJ ¥ 8§ viw]
[]
IIS|@S O} Leen dwe)ls v’ (¥6N138L) al
3w 404 31 SAemy ¢ (MBNIML) al
4BQUWNU JeEN JUBLIND Jabt HENL3IO W3 dwo
PUNO} 30U B[} WOD §} GWOD
03 dwli ® 40 1[Ny Alowam 31 (ZU) I8B8S DR) O8I BY) YIIM UL @(dwis @

‘40448 ou 31 I8e bwi; Ouez BY) YIIM UM Ba[dwIs ¢ Bue BUIOD JIRB

BUIINO LGNS PRO| Asowew

SR

i34
snjels unIna Jaby » d0d4
JBQUNU JBEN N84} HBN13IE3Y 1w
SNIVIB UINJIBL BAUS S E . HSNJ
SUIINOIGNS PRO] ALOWEw LEEN§ avo ™ TWI
Hs 10l 7k 1
t
pUOY 03 ssesppe buljaels surPIUOD [y ‘Indul uo]

UL PUNWWOD By} U PEIIORdS B BERU BSOUYM B[By} YIIM ALOwew peo|

AP IiNwsep uy Boy

uibol ss0j8q suop 8q ISNw Jesaut
J0QUNU B8N JUSIIND Jeseul
BNBUPPY UINIS S WSO

da2> jaerseay

As3Ip usbort

ABIP/@ s08n Jas|

an uo 31 pebuwyd boudjg
®RUI U} ‘gEPP O} Wwp a8y
JUBIBUT L) (1w}

SABY BINIDV (BUTINOIQNS)
NS IP/ 408N Jaey
#0990 O} wwp jesi

Uty meut

IUNOD Jeyd eAwst

INeu 03 Jdg
JIUNDD JeYd AJUYY

oJmz 331 BUDPY
$$0Q) O3 SuUl| puvewod Adoot

sod Jeyd 03 3dg
IUNDI JEyd Jes)

LUSHO} O pus)

0] .
YOWH3
N1S0W

HEN136 3
™

JO448 PROY JUSIBUER LY

141834
NIBOT
aentas

L EE]
vdi

viva
df
I NI

WO
d0d

dr
IWO
IWO

TWO
TWO

]
SOSKHK0D
SHCMNNI
003

- vel

weuboisd 30 ([{¥D) uarINdexe §

anias

L B E]
4D

v (44na1)
a‘'y

T
T W3
A0
at
ar

{400

weisboud Juessue.y pepeoy unu §

902
3a
b
q
(W01
L
A)
(W) ‘v

t+43n€1 ‘30
e‘a

or
IONI
ONI
ONI
or
o0
al
a

an
a

$$NQ) 03U} U] PuTWwWOI peo] |

0D
-
SHOD 2

SHOO ‘2

panunuod £ Sunsry

L1y
o L}
ur
dJ
e

21

The Computer Journal / Issue #23

vauw xOejet P4 Y AMSH

4@3utod JUeIUNDE Mard qyoM 1Mid1D
48330Q INdU] PUTWWOD 0} sajutody 44N81D qyoOM Y1410
1
1dSAS yr
Ies qesw 41 auopt] 139
oJez 43y suopt 2 134
sbe () 88y -] ¥0
@3Aq Ixeu o3 3di ™ INI
Iney o) urtebe 83AQ Ixeu Jeb (W ‘v ad
aeyd Jutady A1NONDD W
®83Aq Ixau 80} (W 'y a7 :1d8AS

14 AqQ 0} pe3d (@ uy Bugpus) OBujuys jJuyad |

[Z+SHUYHIND/ (1GLAND-) NO3 SANWON
1

41aN3

avo" (103]

«Qava7. viva

oa qHOM

« 04, viva

Ll aNOM
«WNC . viva
N q¥omM

. NN, vivQ
NI qHOm

« N3, viva
3hv8 ax¥om

«3NY8 ., viva

vy3 ayOM

. 9y3, viva

wdd4-uou 2044 ON=RNJdON a1

Hivd QYoM
HiYd . viva
¥3IBN QHOM
I8N, viva
avy QYoM
Jau3IN. viva
d13H THOM
At M viva
1817 qyom
«JA8E7. viva
H1Q aYOM
. MIQ. viva
$ELanD
t
S884pPE 83AQ-Z PUT PUPWWOD @3AQ-y BYY 0 pescdwod 81 Anue s1qe)} ydows]
8[qe3 sweu puwvwwo>d do3
L]
NB3 SAYHIN
]
a1qQe) puPwwod Ul-31INg ddO1 §

PUTWWOD /B aRYD 30 seqenui [

6 BNILSIT
(40012 Bely OIBI) JUSPISELI-NSIP B} PUPEWOD | 13
bei; osmx aeaf>t o] INI
1SHD *IN -1
48QWNU ALJUS B[Qe} Juswe.DEpt o] 330
b, ONI
susippe dixst w INI H 4:)
£SHO INPQ
AJua BQU) PUPEWOD IxEU O3 diNst ™ INT Hw: "l
(o8 bwyy ouez) Juspyseu_did 81 purewos 134
YBHD ‘ IN ur

¢ o« L o)

(ds) ®q I puTwwod INdUY Ul 4PYD IxSUL 33 'y an
UMOp JUNDD§ Z8HWD INCa
R, INE
404> Ineu 03 Idt 30 INT
ys3ew ouy £8HD“IN e
[2} 42
As3us s[qe) Isuiebde esedwody (3 ‘vw an T8N
(XEW @) PUPNWSOI/B4PYD JO Jeqeunut SYYHIN‘G al

sewyu pusweo> pasols o3 3d§ N2E39°'30 at 21860
ABIUNOD PUSEWCD B8 BAONKIN ‘D a

a1qe) puswwod o3 3d¢ at 1y3IsaNd

§

PUPESOD JUSP IS8 L-dID sSuvee |

Ios Bwyy .7, *JIUSPpISEs.dID 31 PUREWOD ;O ESBIPPY O3 83d Y ‘UMNIBS WO [}
JBUUEDS (BIQP) PUREEOD) [QIPWD §

(]

8 ONIL18ID
L
Y ¥0
o} d0d
80qa TwWI
24 HB8hd 498009
]
3q eAws puw sopq (t¥d §
]

quopQq 03 N4y 11vHe HY1 ‘D al QMAS
pwms O3 NAyI (e NGE24 ' 3a a1 1JAYAS
]
800840 ue
HZ1°*D a1 INWIS
[]
S00ENE ur
HIT*D a7 twwas
Q>4 Ajidede NO®D 4430 a1 duvas
[]
00448 ue
HO1 ‘D al 38010
t
139
UNIBI SOOI 104 Dery Osez Jest v IONIT

sogd WD 1800849

sopqLb 03 Nyl tivst HA®*D ad $N3IJO
]
usdo 03 nayy (IR NGE33° 30 al
v (40a39d) al
v ¥OX 4N3H0
[}
]
swes 37 jsoqe| 13
™)
3AIN¥AL W al
IINwsep Isurebe 31 esedwost (] J3a
2 13
OUng ¢] ¥O
pdway w1 (D4 ejeIpsew)) @3Aq puzi o'y ay
UVOFIEIT4 IPOW SPOI-BYI-UT S0) sejulod) 1+0 NO3 YaJdW3IL
190 W03

t
IABGe SUPSW 388 I ‘ITNG UD I1NSUTINOJS UIBOT YIOQ O} VOWWOD BUIINOL 1§
]

N1O00D dfC 500

1
@At4p J(nesep uy Boty (3NINAL) ‘Y a1
awew 41 JOQe z 13

SASIP NDWYDS 0™ W0J TWI INTISOYW

22 The Computer Journal / Issue #23

Listing 9 continued —
STACK EQuU] itop of stack
3
§ command file control block
'

FCBDN: RSRV fdisk name
FCBFN: RSRV 1file name -
FCBFT: RSRV tfile type

RSRV jextant number

RSRY isl and a2

RSRY frecord count

FCBDM: RSRV
FCBCR: RSRV
PAGCNT: BYTE
CHRCNT: BYTE
QMCNT: RYTE

$disk group map
fcurrent record nusber
INES-2 flines left on page
tchar count for read
jtquestion mark count for fcb token scanner

L A N N PN
5

NOTE: THE CODE PRESENTED THUS FAR WILL ASSEMBLE BY ITBELF INTO A WORKING
CCP WITHOUT INTERNAL COMMAND STRUCTURES. THE ONLY ERROR RETURNED
WILL BE UNDEFINED LABELS FOR COMMAND ADDRESSES IF THERE ARE SUCH
ENTRIES IN THE COMMAND TABLE. OTHER THAN THIS THE CODE PRESENTED

THUS FAR IS STANDALONE IN NATURE.

CHAIN FILE “A" CONTAINS ALL INTERNAL CCP COMMAND MODULES.

- e e e = we e e e wm

CHAIN *CCPA’

fchain to internal command module file

Failing an indicator to load a command file,
(XXXXXXXX.COM), we have to check to see if the command
line contains a request for an internal CCP command function.
The routine CMDSER is the routine responsible for this fun-
ction. In my opinion CMDSER is the most important CCP code
segment! It may be considered an interpreter, not unlike what
may be found in a programming language. In fact, I have writ-
ten industrial process control languages in code similar to that
shown in Listing 8.

CALL CMDSER iscan for ccp-resident command
3P NZ,COM tnot ccp-resident

L0 A, (M) ifound it: get low-order part
INC MU iget high—order part

LD H, (ML) Istore high
Lo LA jstore low
IF (HL) fexecute ccp routine

For a basic overview of CMDSER, and the remainder of our
main loop: if a valid internal CCP command or function is found
by CMDSER the “‘Z" flag is set as an indicator for the main loop.
If the ‘2" flag is not set then no internal command has been
detected, and we must assume that the data in the command

The Computer Journal / Issue #23

line is the name of a program on the current drive. If this is not
the case then the COM routine will have to deal with that fact.

You will note that the form of our command table is that of a
character string, representing the command, followed by the
address where that command may be found. If the command
table scanner detects, by a match of characters in the command
line with characters in a command name, the address of the
routine is loaded into the ‘‘HL" register pair.

Once the address is loaded we do a JUMP, not a call, to the-

address where the routine is located. This is an important con-
cept. Remember that we placed the address of the CCP restart
routine onto the stack. If our routine, when it has completed its
function, performs a RET instruction, then program control will
be passed to the restart routine. In a similar fashion, we could
JUMP to an error routine that ends with a RET instruction and
the address returned to from that routine would also be the
RESTART routine. This assumes, of course, that our command
routine has not trashed the stack, making the proper return ad-
dress not the top two bytes on the stack.

Understand fully that when we enter the internal command
we enter the routine without commitment to any register usage,
there is nothing to be saved, and the way home is on the top of
the stack. What we do in that routine is entirely our affair,
provided we do not trash the stack with the address of the way
home at its top. This is a profound thought, and what we have
worked so hard to present in an understandable fashion. At this
point in time you should be familiar enough with the assembier,
and the thought processes involved in presenting this material,
to begin designing your own CCP commands. We will digress for
a moment and look at the commands in this basic CCP, and the
way they are organized.

Recall the RCPM equate at the beginning of the primary sour-
ce listing. This equate is used to prepare a system that may be
open to the public, a “‘Remote CP/M System.’’ This is a system
whereby others may call your computer, by telephone, using a
modem, and operate your equipment as if sitting at the
keyboard. In all walks of life there are paraniod psychetics, and
we all have to deal with people of this type. This is all fine, and
part of life, until they start messing with our computers. To
protect ourselves we have installed an equate that will cause the
assembler not to include code that may be used by one of these
disgusting creatures to trash our system. Excluding the com-
mands noted will help to protect our system from these “‘twits,”
but cannot render us completely safe.

Unfortunately these commands are no longer available to us,
once excluded, as they might be in ZCPR3, but at least no one
else can use them against us. Pardon my hostility towards the
lower life forms, but I find them far more trouble than they are
worth. Of course, this may have a lot to do with why I am a her-
mit.

The command table consists of strings based upon a four
character command string. The number of characters per
command may be expanded to no more than 8 characters. Be
sure to change the equate that defines the number of characters
in a command and also to fill out the number of characters with
spaces if the command name is less than the standard number
of characters in your system.

Remember that once we JUMP to our command routine we
have but one restriction upon us, not to trash the stack, which
holds our return address. We do not really need to use the stack,
and we could save it if we have to make use of the limited stack
space available. The key issue here is that we can do whatever
we wish, within the confines of the space allowed the CCP
program itself.

The concept of named directories is possible to implement
isn’t it? What if the routine to log in a given directory were inser-
ted as a command name? And, what if, when we loaded the user
area number to print the command line prompt, we used the
user area number to index a table of user area names? Or what

23

if we had a hardware sequence we used all the time and installed
as a CCP command? The answer to all these questions is ‘‘why
not,” “‘or is there a reason why we couldn’t do all these things?”
The only restriction we have upon us is the size of the CCP itself,
and the reality that if we add a command, we would have to
delete another command to make room for it. In ZCPR3 they did
away with the internal directory program, allowing the user to
select from many sorted directory programs set aside as COM
files.

What can we do from here? Well, [know it is rude to answer a
question with a question, but what are the limits of your
imagination?

In the next installment of this series I will present the “‘nor-
mal” CCP commands and show you how I develop new CCP
commands. I would hope that you would study those portions of
the code I have left to your own investigation, and having done
that, you will think about the way internal commands are
processed. We just jump to a spot inside the CCP, having en-
tered the name of the command in the command table, followed
by its address. We also have the way home sitting on the stack,
should we need it. What we may do from this point onward is
only a matter of what we want to do in the space allowed for such
things. But then again, there is nothing that requires the address
following the command-name string to be in the CCP, it can be
anywhere, now can’t it. Hnmmmmm Something to think about
eh? @

* * *

See page 45 for ordering NEW-DOS disk.

xxx

e L U

“..received my moneys warth with just ane
Issue...”

—J. Trenbick .
" .always stop to read CTM. even though

most ather magazines | receive {and write for)
only get cursary examination.. "
—Fred Blechman. K6UGT

Usa

Mexico. Canada
Foreign

tU'S tunds anly)
Permanent(U.S. Subscription)
Sample Copy

CHET LAMBERT, W4WDR
1704 Sam Drive » Birmingham. AL 35235
205) 8540271

31500 tor 1 year

$25.00
$35.00()and) - $55.00air)

$100.00
$3.50

The Computer Journal / Issue #23

4

table generator, debuggers, translators, disassembler — ready to free you!

More missing links found — Z Application Progams! Fly with eagles! Our programs promote high
performance through flexibility! Productivity resuits from dynamically changeable work environments,

New generation communications package provides levels of-flexibility, func-
TERM 1Nl tionality, performance notavailable untit now. Repiaces BYE and XMODEM . ..
master/serverlocal area network capability ... public or private bulletin board
and electronic message handling are integral features . . . auto-diai/answer, menu install . . .
XMODEM (CRC/Checksum), MODEM?7 Batch, Kermit, CIS, and XON/XQOFF protocols . . .

100-page manual e e e $99.00
Rolls Royce of message handling systems . . . mates with TERM Il or BYE for
Z-MSG most advanced overall electronic maii/file transfer capabilities . . . menu
installed . . . extreme configurability . .. many levels of access and security . ..
word, phrase editor, field search . . . complete message manipulation and database
aaF YT ¥ ¥ Ve - $99.95

Elegant, menu and command-line driven file and disk catalog manager.
DISCAT Generates and controls multiple master catalogs, working catalog used for
update quickness. Nine flexible modules easily altered by user for custom
requirements. Works with Z shells (VMENU, VFILER, MENU), aliases, and muitiple commands
LT g 0T $39.99

ZCPR3: The Manual Bound, 350 pages, typeset book describes features of ZCPR3
command processor, how it works, how to install, and detailed command usage. Bible to
UNAErstand Z-Sys oM ...ttt it ittt $19.95

ZCPR3 and 1/0PS (oose-ieaf book, 50 pages, 8-1/2" by 11", describes ins-and-outs of
input/output processing using Z-System. Shows how to modify your BIOS to include I/O
redirection ... complementsTheManual $9.95

matching operator to tasks and machines.

Above programs require 48K-byte memory, ZCPR3, Z-Com, or Z-System, and Z80 NSC800 HD64180-
based computer. Shipping from stock. State desired disk format, plus two acceptable aiternatives. As
payment, we accept Visa, Mastercard, personal checks, money orders, and purchase orders from

established companies. We also ship UPS COD.

Call or write to place order or to obtain literature.

Si

Ny

Echelon, Inc. 101FirstStreet o Suitea27 o LosAltos, CA 81022 o 115 948-3820j

£ sersvou FREE!

Free lo create computer environments right for you . . . free to automate repetitive tasks . . . free to
increase your productivity. Z-System, the high-performance 8-bit operating system that flies!
Optimized assembly language code — full software development system with linkable libraries of often
needed subroutines —relocating (ROM and RAM) macro assembiler, linker, librarian, cross-reference

\

The Computer Journal / Issue #23

Editing The CP/M Operating System

by Walter E. Pfiester

Introduction

Editing, changing and operating on your CP/M® operating
system can be a real hassle using “DDT.COMe® " or
“XMAN.COM”. These machine code editors work directly on
the system tracks. It is much easier to work on these tracks if
they are saved as a file first. This article wi!l detail how to save
the operating system tracks as a file and later, after editing or
changing this file, placing this file back on the disk in the proper
location for use as your new version of CP/M.

Saving the Operating System as a File

You will have to have ‘“MOVCPM.COM"” and
“SYSGEN.COM” on the disk you want to operate on. In ad-
dition, I find it useful to have ‘SD.COM"’ (or the enhanced ver-
sion, “S.COM", “STAT.COM", and ‘EDFILE.COM” on the
same disk. The first two files are used to measure the size of the
files. The later file is a machine code editor, in the public
domain used to dump and edit, full screen, any file using HEX
formats OR ASCII codes. It is not the intent of this article to
delve in to the use of *“EDFILE.COM'. That can be best handled
by downloading the “EDFILE.DOC” file from your RCP/M
library.

The first thing that you must do is to measure the size, in
hexadecimal pages of memory, of your operating system. The
easiest way to do that is to type:

A>movcpm 63 *

For our purposes here we want to find out how many pages of
memory are required for a 63K CP/M system. If you are using a
64K system then type movcpm 64 *. For this article I will use a
63K CP/M system. As a result of the command above, what
results is as follows: :

CONSTRUCTING 63k CP/M vers 2.2
READY FOR "“SYSGEN" OR
"SAVE 34 CPM63.COM™

to—————— > This is the numbar we want'

The 63 above designates the operating system size. If you are
going to change the size of the system for later editing, recom-

piling or whatever, type the size in place of 64, ie MOVCPM 55 *.

The important thing here is to write down the number after
the word SAVE. What MOVCPM has done for us is
automatically calculate the amount of memory required to save
the CP/M image as a file. You are done using ‘‘MOV-
CPM.COM".

Now type “SYSGEN". In response to the question SOURCE,
type a <CR>. When prompted as to the destination, type
another <CR>. Your entire CP/M operating system is now in
RAM, starting at 100h. To save this image as a file type 'SAVE
34 CPM63.NEW"'. 34 is the number of hexadecimal pages that
you came up with above with MOVCPM.COM above.
CPM63.NEW is the file name given to save the system image as.
[t could just as easily be named anything! It should also be noted
at this time that the operating system saved has ZCPR on it
(Micro Cornucopia’s version) and it was created using instruc-
tions on their disk K22.

Editing and Using the New (SYSTEM) File

Now the file “CPM63.SYS’’ can be edited, changed, whatever.
I routinely use “EDFILE” to edit machine code. It is a full
screen editor that can be used in both the ASCII and Hex fields.
Besides which, it is one of the best FREE, public domain pieces
of software!

Using EDFILE

As an example in using this powerful tool, I will change the
logon message on cold boot to something more meaningfull
than:

KAYPRO I1 63k CP/M vers 2.2
to:

63K ZCPR-2 9/20/84

882-2.2

In addition I will show you how to edit the operating system to
autoload a file on cold boot.

The file we’ll be editing is CPM63.NEW created above. To edit
using EDFILE, type the following: “EDFILE CPM63.NEW"
What will result is shown in Figure 1.

AG>EDFILE B:CPM&3.SYS

80 91 92 03 94 65 86 97 98 89
POO@ -~ C3 3E 92 43 AF S50 59 52 49 47
0918 - 20 31 39 37 38 2C 20 44 49 47
8028 - 45 53 45 41 52 43 48 20 SO oF

0036 - 20 28 43 29 26 31 39 38 32 2C
8849 -~ 90 29 29 29 29 29 29 29 C? OE
9056 - DB FE 7B D@ Eb& SF C9 SF o€ 02
#9268 - CD S7 6t 3E 8A CD 57 01 C9 ES
99078 - C8 ES CD 57 81 €1 23 C3 4E 41

PSearch String = \KAYPRO I1I\

Vers: @1-10-84§ by: J.C.Kaltwasser & M.J.Mosko, K3RL
File: B:CPM63.BYS Record: 40060 (S000H)

Figurel

LOF: 206848 (2844H)

28 6C 8D OE oF 3123454 789ABCDEF

54 290 28 43 29 >C>.COPYRIBHY (C)<

54 41 4AC 29 52 > 1978, DIBITAL R«
6F

74 &9 6E 73
4E 4C 53 6F 26
CD 035 2@ FE 61
o5 06 C9 3E oD
SE 41 €1 7E B7
2A 01 60 11 18

>ESEARCH Portions<
> (C) 1982, NLSo&<
2.0 1. .M. . vac
IXVCPF_I_ .M. I>.<
M. >. M., leMt . a~7<
oM. adCn . 0*. .. . <

26

At the prompt above, type an *‘S”’. EDFILE will ask you for
the string to search on. What we are doing, is searching for an
ASCII string (EDFILE can also search for a HEX string). Reply
with a backslash ‘' \ "’ and the string itself followed by another
backsiash, as shown above. Edfile will then locate the string as
shown at address 1EE(as show in Figure 2. This is the begin-
ning of the log on message we are going to change.

Type <CTRL> E. This will place your cursor in the HEX
field. To move about, use the arrow keys. To change to the ASCII
field, type another <CTRL> E. Again, the arrow keys will
move you about this field. To edit the message, type over the
message aiready there. Remember, the carriage return and line
feed can not be edited in the ASCII field, they need to be added in
the HEX field. Now that you have a new log in message, let’s
saveit todisk. First, type a < CTRL> W. This will write all your
changes out to RAM and place you at EDFILE’s command
level. To write the changes to disk and return to CP/M, type a
“Q" (for QUIT). Your are done!

You have a new file to load in place of your old CP/M
operating system. Once you have completed changing this file,
placing it back in the correct location on disk is very easy. Type
SYSGEN CPM63.SYS <CR>. The prompt will ask you for the
drive to place the system image to. Type A (or B or whatever
drive you want it to go to) as shown in Figure 3.

That’s all there is to it. The next time you boot off the drive
you'll have your new system image on it with the new log in
message.

Let’s do this again, in addition to the new log in message, have
the system autoload ‘S $AL"’. ‘S’ is a modified version of ‘‘SD-
92’’ that I have modified. The $AL command tail will lok at all
user areas, and list the directory of all libraries. Now let's
modify the operating system, again.

This time, use the ASCII search again to look for the word
“COPYRIGHT" (see Figure4).

The Computer Journal / Issue #23

Save this file again, and put it in place of your system tracks.
Now the next time you cold boot, the log in message will be
meaningfull and you will automatically run ““S $AL”’.

Summary

When you obtain a copy of “EDFILE.COM” make sure to ob-
tain a copy of the accompanying .DOC file, it is absolutely essen-
tial. Another feature I have not heretofor mentioned, ED-
FILE.COM has HELP features built in!

I also use this method of editing my CP/M system in order to
test my compiled Turbo Pascal® files under different size
operating systems (saved on disk as CPM64.COM, CPM63.COM,
CPM62.COM, etc.). Additionally, 1 have used this method to
change my operating system (changed the resident CP/M
command “USER" to “U”, logon procedures, autoload fun-
ctions, prompt messages, and different size operating systems
with new logical assignments for my disk drives. Try this
system and I don’t think you'll ever go back to using
“XAMN.COM” or “DDT.COM” to modify your .COM files
again!

You can write to me (Walter E. Pfiester) in care of THE
COMPUTER JOURNAL or direct to my home at 1 Skadden
Terrace, Tully, N.Y. 13159. Please include a self-addressed,
stamped envelope or a disk formatted to KayPro IV along with a
stamped return mailer. I do not respond to mail without a SASE.

Special Disk Available

The EDFILE and SD-92 programs Walt uses are not currently
part of our users’ disk library, but are available from The Com-
puter Journal in 8 inch SSSD or a number of 5.25 inch formats for
$10. Ask for the “EDFILE" disk, and fully specify the format for
your machine. Other selected programs will be included,

Note the pattern of HEX 20’s above. At location 0887 (which depending on the disk capacity. g
now contains 00h) place the number of HEX bytes the command
line will contain, in this case, 5. At location 0888 start the actual
command. The result is shown in Figure 5.
File: B:CPMA3.SYS Record: 00061 (SO3DH) LOF: 906868 (2044H)

298 €1 82 03 94 05 06 67 98 09 OA VB 6C OD OE oOF 9123456789ABCDEF
1EBG - C3 48 FA C3I 99 FA CI F3I FA C3 @89 FB C3 2F FB C3 >CHzC.zCs2C. (C/{C<
1E93 - 48 FB C3I 43 FB C3 3E FB C3I 7C FB C3 80 FB C3 B4 MILCCCH>(CI(C.(C.<
1EA®@ - FB CI 88 FBC3 OC FB C3I 92 FB C3 98 FB C3 &5 FB >{C.{(C.{(C.{(C. (Ce(<
1EB@ - C3 AB FB 61 o9 OB A P8 AC 36 3I1 32 33 34 35 36 b of X S, B123456<
1EC® -~ 37 38 39 2D 2C 6D 2 #5 CD 78 FB AF 32 €4 00 3A 2789, . . Mx{/2..:<
1ED@ - 33 FA 32 03 00 3A 47 FA D3 @8 CD CF FB 1A @D @A >322..:8z28.M0(...<
1EE® - 4B 41 59 50 S2 AF 20 A9 49 20 36 34 4B 20 43 50 MHWAYPRO 11 64k CP<
1EFO — 2F 4D 20 76 65 72 73 20 32 26 32 6D 0A 96 3E C3 >/ vers 2.2...>C<

Figure 2
A>SYSBEN CPM&63I. NENW
KAYPRO SYSGEN VER 2.2
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)D (-—-———- TYPE THIS
DESTINATION ON b, THEN TYPE RETURN <{cr)> <{—-———m——c——=- TYPE THIS
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr> <-=TYPE THIS
Figure 3

The Computer Journal / Issue #23 27

File: B:CPM&63.5YS Record: 060617 (8011H) LOF: 00668 (SA44H)

- 90 01 92 O3 04 85 86 @7 a8 09 OA B OC @D OE OF 2123454 789ABC YEF
@88@ -~ C3 S5C E7 C3 S8 E7 7F @0 20 23 20 20 20 20 20 20 >C\gCxg™. <
9898 -~ 20 20 20 20 20 20 20 20 43 AF S0 59 52 49 47 48 > COPYRIGHK
— 9BAP - S4 2@ 28 43 29 20 31 3IF 37 39 2C 20 43 49 47 49 >T (C) 1979, DIGIC
@8RG -~ S4 41 4AC 20 52 435 S3 45 41 S2 43 48 20 20 00 O3 >TAL RESEARCH ..<
P8CE - 00 OO0 o0 00 00 60 00 00 00 4G 90 20 00 00 03 00 D ane e e
28DC -~ OO0 00 0F O OO 00 00 09 S0 V3 O3 OO 00 60 60 00 Dessesessaanaseest
— GBED - o0 00 OF 00 OO0 00 00 90 90 0 00 OO 00 00 00 00 deeoas craaeaaen et
O8F@ -~ 00 00 00 00 B9 00 00 O3 00 W0 OO OB B0 03 00 00 D, <
Figure 4
- File: B:CPM&63.SYS Record: @917 (@811H) LOF: @0368 (9044H)
@A 31 62 83 G4 95 @b A7 08 ©9 BA BB OC 8D OE OF B1234564789ARCDEF
a888 - CI SC E7 C3 58 E7 7F @5 33 28 24 41 4C 20 20 20 >C\gCxg™~.S sAL <
— G893 - 20 20 20 20 20 20 20 28 43 4F 5@ 59 52 49 47 48 > COPYRIGH<
PEAG - S4 23 28 43 29 2@ 31 39 37 39 2C 20 44 49 47 439 >T (C) 1979, DIGI
@EBY - S4 41 4C 2@ 52 45 53 45 41 S2 43 48 20 20 00 oG >TAL RESEARCH . .<
8CE - 40 G O3 00 @3 A8 30 30 O3 OO 00 OF 00 00 O 06 e eseasas e <
— A8DE - 90 00 G0 90 00 OO @0 69 00 00 30 00 0 00 00 09 e e rsca et <
ABEG -~ OO0 OO0 OG 00 00 00 O3 V0 OO @O O0F OO0 OB I0 9 O Peeeeana
BBF0 - 00 OO0 &9 V8 60 @0 OF 00 00 00 Y O0 03 OO 00 OP Tttt eeanoconnene <
_ Figure5
LB B 4

APPLE), +,7//,//e &//c OWNERS
UPGRADE THAT TIRED 6502 TO 16 BITS H
€5802 CPU _ $4995
16 bit version of the 6502. Pin for pin and complietsly software
compatible with the 6502 CPU. You can upgrade your Apple)+,

/11418 orl/c to a 16 bit computer simply by replacing the 6502
with the 65802 without losing the sbiilty to run eny old softwars.

ProDOS ORCA/M (ist $79.95) 369.95
This ProDOS version of ORCA/M comes with the complets 65802
Instruction set. If you intend to deveiope softwars for this new
CPU, then this peckage is s must. Chosen by the designers of U
65002 g3 the standerd 65002 sssembler.

310995

This package includes 65802 CPU and the ProDOS ORCA/M. All

Surplus Parts CoTIDO SOt SR, PASCAL P-erd g & PR

— TO ORDER, SEND CHECK OR MONEY ORDER TO:
Resource ALLIANCE COMPUTERS

PO BOX 408
_ Here’s a catalog any serious computer tinkerer needs. {t's a CORONA, NY 11368
treasure-trove of stepper motors, gear motors, bearings, gears, POSTAGE AND INSURANCE INCLUDED. (718) 420 2980
power supplies, lab items, parts and pieces of mechanical All CPU's will be sent by Postal Service, 13t class insured or UPS,

and electrical assemblies, science doo-dads, goofy things, insured. Plesse specify USPS or UPS. UPS dossnl deifver Lo POBY.
| . b .) . Software will be sent by UPS Blue Label. If you want UPS Mext Dey
— pius project boxes, lamps, lights, switches, computer furni- Alr, 800 $5.00 (CPUS only!). Most ail orders sent out same dey
ture, and stuff you might have:never realized you needed. COD odd $3.00. APO's and FPO's welcomed. ‘
All at deep discounts cause they are surplus! Forsign orders: Plesss meks payment in US dollars drswn on s US
Published every couple of months, and consecutive issues bank.)A‘:o’rs forﬂg;:ﬁ Mol and Air Mail Postage (sacept
- are completely different. Send $1.00 for next three issues. Canada). No foreign ;
. PLEASE PHONE NUMBER WITH ORDER
JERRYCO, INC. 601 Linden Ptace, Evanston, Illinois 60202 INCLLDE YOR

INDEXER

The Computer Journal / Issue #23

Turbo Pascal Program to Create Index For Almost Any Purpose

by Jerry Houston

For a while I worked my way through school as a baker on
weekends, and it didn’t take too many months of pounding dough
for me to decide I'd rather be working with a computer. The
owner of the bakery had bought an Apple II+® to operate a
relatively simple database to keep track of recipes, and I was
given the task of writing the program.

Well, that simple database turned out to be SO useful that my
boss kept thinking of other aspects of the operation that could
benefit from some computerizing, if I didn’t mind writing the
programs instead of busting my butt in the bakery. Let me tell
you, when HE ran out of new ideas, I supplied all I could think
of!

Eventually, of course, the programs were integrated into a
database system that operated on multiple Apple Ile’s, connec-
ted to hard-disk storage from ICE (Space Coast Systems in
Florida), with a file server. I wrote routines that let the various
computers share files without conflict, but that’s another story
for another time. The point is, when it came time to document
this system of programs—both for the non-programmer users
and for the benefit of any future maintenance programmer—I
ended up with more than 200 pages of system manual.

For any kind of system manual to be useful, it just HAS to
have an index. The index needs to be sorted alphabetically, and I
figured that I would need this service often enough to make
writing a program to do it worthwhile. In fact, this has become
one of my most-often-used utility programs, as there seems to
be no end of indexing jobs for any writer or programmer.

There are many good uses for an indexing program, besides
the obvious ones mentioned. Using INDEXER, for example, you
can make a sorted index of a year’s worth of The Computer
Journal, making it easy to find a particular article not only by
name, but by any number of subject cross-references. You can
use INDEXER to catalog a record collection, or nearly any
other kind of collection.

The program is designed so that sorted index files can be ap-
pended, making it possible to create a simple index in one sit-
ting, then go back and do the heavy-duty cross-referencing
later. The files that are created by INDEXER are ordinary text
files, with no special characteristics other than that they are
sorted alphabetically. Thus, once the index file has been
created, it's an easy matter to use your favorite word-processor
(I can’t help it - mine’s still WordStar®) to format that plain-
vanilla listing into a good looking index.

I have provided source code in the past for several programs,
usually making it for Kaypro 4-84® . This time there are listings
for Osborne Executive® (which I use at work), and for IBM-
PC* and true compatibles. I'm not about to ‘‘abandon’ CP/M
in my writing, but I do intend to feature newer systems as well.

If anyone would like to save the time needed to type this sour-
ce code, The Computer Journal can supply the program on
diskette for MS/PC-DOS, Osborne Executive and Kaypro 4-84.
Though they can’'t be expected to re-write the program
specifically for additional computers, they can supply one of the
above-mentioned versions on a different diskette format, and
you can do your own customizing. Ordering information is at the
edn of this article.

As my writing is always tutorial, besides offering what I think
are useful program ideas I always go into detail about some of
the features of Turbo Pascal. This time, it's additional power
that came with v3.0, and in particular, command line

parameters and windowing.

Running The Program

INDEXER is nearly self-documenting, because there just
isn’t the need for much compiexity in a program like this. There
are a few things you need to know, however.

When the program has been compiled as a .COM file, it can be
run with a parameter supplied on the command line. That
parameter will be the name of the index that’s to be created,
without an extension. INDEXER will append the extension
.NDX to the name you choose.

If the file you've named already exists, INDEXER will open it
for appending data to the end of that file, present a screen that
will let you type in more entries and page numbers, and let you
know how many records were supplied from the file. '

If the file did not exist before, it will now—INDEXER will
create the file for you and present the data-entry screen. If you
try to run the program INDEXER without specifying a file
name at all, there’s a ‘‘sorry about that...”’ message printed and
you're returned to the system. There just isn't anything useful
you can do without supplying a file name, so the program in-
sists.

Having started successfully, you’ll be at the data-entry
screen. The CP/M version of the program simulates using a
window for data entry, as the 8-bit version of Turbo Pascal does
not support windowing (it would have to be custom-
implemented for every possible terminal type). The version
written for 16-bit machines makes use of a window for data in-
put, making the program easier to write and smoother-running
inthe end.

Fields are defined for 40-character items, and for up to 6-
character page numbers. The page numbers are represented in-
ternally as strings, not integers, making it possible to use
decimal points or hyphens in the page numbers if desired. There
are good reasons for doing it this way—page numbers are often
best referenced according to sections or chapters, such as 1-23
or 1.23 to indicate page 23 of section 1. Also, for catalogging ar-
ticles from magazines, you might want to include an issue num-
ber followed by a page number, such as 22:45 to indicate page 45
of issue 22. If you find that you need more than 6 places for page
numbers, there are only a few simple and obvious changes
needed in the program.

When the last entry has been made (for this session), enter
one called ‘END’. The program will also be looking for ‘End’
and ‘end’, so any of these can be used. Remember, of course,
you won’t be able to have an actual entry in your index called
‘END’ (or any of the above variations on that), but that
shouldn’t be a problem.

If you're customizing this program, it's possible to write and
use a function called GetStr which will get a string from the
user, but that will also return a message that a FUNCTION
KEY was pressed. I'll include a listing of that function at the end
of this article for anyone who's interested—it can be very useful
in many programs. Here, though, it seems perfectly natural and
logical just to type ‘END’ to end the session.

The file will be (re)sorted at this point. The program uses a
‘shaker sort’ that is an improvement on the simplest bubble sor-
ts, but still simple and convenient to code. The example index
that accompanies this article took about 5 seconds to sort on an
XT-compatible. If you've added entries to an existing index file,

The Computer Journal / Issue #23

they will be integrated into the file in sorted order. Then the
finished file is written to disk, with the name you used and an ex-
tension of NDX.

The records are written to the index file with the entries
separated from the page numbers by commas. This has been
most useful whenever I've used the program, but that - of course
- could easily be modified. You might prefer a hyphen,
semicolon, or just spaces as a separator.

The resulting file is a standard text file (file of characters) in
which each line is terminated by a carriage-return. It's really
easy to edit the index file with a word processor, separating the
entries into blocks of records that start with the same letter.

The Program Source Code

Since the two versions are nearly the same, Ul provide a
listing and a detailed description of the MS/PC-DOS version.
I'm sure that readers intending to modify the Osborne version
for other CP/M computers will find it an easy job, and there just
aren’t enough differences to justify printing two separate source
listings.

Anyone with an '84-or-later Kaypro should refer to page 5 of
issue #21 of The Computer Journal for a review of the constants
that can be used for special screen attributes, such as reverse
video, underline, etc.

We should begin with the Main Logic, which is the last part of
a Turbo Pascal program, and comes between the ‘Begin’ and
the ‘End’ that has a period after it. Some of the instructions
given in the main logic refer to functions and procedures that
are supplied as part of Pascal, and others refer to functions and
procedures that we have defined earlier in the program. That's
why the main logic section comes last—to be used, a variable,
function, or procedure must already be ‘known’ to the compiler.

The first statement in the main logic shows what to do if
ParamCount is zero—in other words, if no filename parameter

APROTEK 1000™ EPROM PROGRAMMER
. AN sum.
only

] (Y
E' $250.00

A SIMPLE, INEXPENSIVE SOLUTION TO PROGRAMMVING EPROMS

The APROTEK 1000 can program 5 voit. 25XX senes through 2564, 27XX
senes through 27256 and 68XX devices plus any CMOS versions of the above
types. Included with each programmer is a personality module of your chorce (others
are only $10.00 ea. when purchased with APROTEK 1000). Later. you may re-
quire future modules at only $15.00 ea.. postage paid. Availlable personahty
modules: PM2716. PM2732, PM2732A, PM2764. PM2764A, PM27128,
PM27256, PM2532. PM2564, PM68764 Iincludes 687661 (Please specify
modules by these numbers).
APROTEK 1000 comes complete with a menu driven BASIC driver programmer
hsting which allows READ. WRITE, COPY. and VERIFY with Checksum. Easily
adapted for use with 18M, Apple, Kaypro, and other microcomputers with a RS-232
port. Also included 1s a menu dnven CPM assembly language driver listing with Z-80
(DART) and 8080 i8251) /O port examples. Interface 1s a simple 3-wire RS-232C
with a female DB-25 connector. A handshake character is sent by the programner
after programming each byte. The interface is switch selectadle at the tollowing
6 baud rates: 300. 1.2k. 2 4k. 4.8k. 9.6k and 19.2k baud. Data format for program-
ming 1$ ‘‘absolute code’’ (i.e. it will program exactly what it 18 sent starting at
EPROM address O) Other standard downloading formats are easiy converted to
absolute {object) code
The APROTEK 1000 is truly umiversal. It comes standard at 117 VAC 50 60 HZ
and may be internaily jumpered for 220-240 VAC 50/60 AZ. FCC venfication
{CLASS B) has been obtained for the APROTEK 1000.

APROTEK 1000 is covered by a 1 year parts snd labor warranty.

FINALLY ~ A Simpie, inexpensive Solution To Erasing EPROMS

APROTEK-200™ EPROM ERASER APROTEK-300™ only $60.00. A TEX
' PROMS This eraser s 1dentical to APRO
fﬂil.{?ﬁe&f'fﬁ a?,:n:‘w;oo s,‘.m_,,es, 200™ but has a built-in timer so that the
you switch OFF and are ready to uitraviolet lamp automatically turns off in
reprogram 10 minutes, elminating any nsg of overex

M
APROTEK-200™ oniy $45.00. posure damage to your EPROI
o o APROTEK-300™ oniy $60.00.

v——
APROPOS TECHNOLOGY
1071-A Avenida Acaso. Camarillo, CA 93010
CALL OUR TOLL FREE ORDEA LINES TODAY:
1-1800) 962.-5800 USA or 1-(800) 962-3800 CALIFORNIA
TECHNICAL INFORMATION: 1-(805) 482-3604
Add Shipping Per item: $3 00 Cont. U S. 96.00 CAN. Mexico, HI, AK. UPS Blue

29

was supplied with the program name when it was run. Indexer
will either append new information to the end of an existing file,
or it will create a brand new file if needed. But there's just
nothing it can do without a file at all, so this block of code prints
an error message, makes an unflattering sound, and returns the
user to DOS.

Incidentally, this first statement is a compound statement, as
it contains a block of code starting with a ‘Begin’ and finishing
with an ‘End;’. Whenever the syntax of Pascal calls for a
statement, several statements can be included as need,
provided they are formed into a block as shown.

The second statement assigns the value of the filename given
with the program to a variable called ‘STR’ and tacks on the ex-
tension ‘. NDX'. This is how the parameters that are added at the
command line can be accessed within your program. Param-
Count is a reserved variable that will contain the number of
parameters that followed the program name on the command
line, and ParamStr() is a reserved string array that contains
the actual parameters as typed. If ParamCount is zero, then no
parameters were provided for the program.

The variable ‘Index’ is used throughout the program to keep
track of the number of entries that have been made. It is
initialized to zero before an attempt is made to read an existing
index file with the procedure ‘ReadFile’. If a previous version of
the file exists, then ‘Index’ gets incremented as each record is
read into memory. Thereafter, ‘Index’ is incremented as new
entries are supplied by the user.

That happens in the procedure called ‘GetEntries’, after
which a window statement resets the default window to a full
screen. A ‘Please WAIT..." message is displayed while the array
of entries and page numbers is sorted in the procedure ‘Shaker-
Sort’, then a message verifies how many records now exist in
the index file.

Pressing <RETurn>
‘WriteFile', which ends it all.

Operating the original version of this program on a CP/M
computer with floppy disk drives took long enough at each 1/0
step that the ‘progress’ or ‘status’ messages were displayed on
the screen long enough to be useful. Changing to a 16-bit com-
puter with a hard drive made such a speed difference that I in-
serted a number of statements that say ‘Delay(1000)’, just to
keep a message on the screen for a full second. Even if all the
message says is ‘Please WAIT... Sorting File', it’s rude for it to
flash by so fast that the user can’t read it. These delays have ab-
solutely nothing to do with the processing that goes on in the
program, and they may all be removed to speed things up.

then executes the procedure

Example of Index

For the unconvinced, here’s an example of an index that I
made in just a few minutes. I indexed a copy of The Computer
Journal that was handy, so the subject could be something of in-
terest that’s available to all the readers. This example is
reasonably thorough, but as you read through it you'll think of
many other entries that could be used to cross-index even fur-
ther. The idea is to find each important topic or concept, then en-
ter it as many times as you can think of ways to refer to it. Then
when you want to look up that subject in the future, there will be
that many chances of finding it where you look first.

Naturally, the first entries to make are the titles of the various
articles, so you can find in which issue and on what page a par-
ticular one is printed. Then additional entries are made on a
page-by-page basis. Since the index file can be started at one
time and re-used many times afterwards, there's no need to try
to index a whole issue in one sitting, or to index it thoroughly the
first time through. If the object IS to catalog several issues of a
publication, the file can be appended with each issue that comes
out.

AMINI

tpu3

f3ug M

S, 3vd RLESEL]
1(£*8%) AX0108

BE RSP

108p 1A~EY

1(£°ST)AXD109
tC, a1ty ®@3Tupm

Pue 3105 O3 13y UAYY ‘AI3ul Ise) me NI, B0A] - wesBOUg JHOS/XIANI .)®3TM

tde

ST 1) AXDL09
uibag
t¢ 1 eabey aunpadouy

®) OO0 31487 O03umoQ IYUBTIY a: atwy uO4

fdemgies) og bty 03 3480 w: srey uoy

(Butiols auojeq B[T1; «@pul s3uOG)

tobe ydwa)

11 + Jvegqjlabey
f{a1e g mbey
tAd3u3dwa}

0T + 41e4)Aa3uy
ic4veg)Aajuy

tpugz
EAUB Ty ¢ 338 T13un
1T + 3487 a: 3387
- BTy =i Iybry
Jeaday

t1 - x@pul «: 3ybriy
11 =2 387

uibag

13405 48RS @4NPEDO .Y

fpugz
1pu3

[T + Jteyjabey

{4rejjabey
abwgydwa;

{1 + JtegjAajuy

[41®egd)Aajzuy
Adsjuzdwa)
utbag

UBYY ([T + 41®43A43UT ¢ [J1ed1AI3UT) 4]

{3405 J@yeygs JOj BUTINOJ demg)

(4.4 3>8;48 puncs)

(burpuasep 3om44s punog)

(butpuadse 328338 punog)

uibag
tdemgise; sunpedouy

fpu3
tpunosoay
1 (2001) Ave 1aq
1 (98) punog
1 (30C) Aw 1ag
1 (P9Z) punog
uybag
1 40443pUNOE ®UnNpel0.Uy

fpu3
fpunosoy
fpu3y
197 - ¥ =2 1
1 (3) punog
urbag
op (P08 < HeTIym
10008 =: 1§
utbag
tsmbajur : 1 MHYA
fumogpunog s.npasouy

1pu3z
IpuUnoson
tpu3
1S + t = 1
t (1) punog
uibag
P (2908 > Lysyiym
1008 =: 1t
uibeg

timba3uy : 1 uoA
19NPUNOS @ .inpato.uy

1pul
1 (@) 4010]3I%a)
1(S1)PuUnosbxIegIne)

utbag

108p IAASY SINPEd0 .Uy

1pul
t (L) 40100348
1 (@) punoabyoeginey
uibag
t3vioT sunpaidouay

(A3tsuajiutr mMOY)

fpu3
1(S1) 401073 %@
1 (@) Punoubyowgixe)
usbegq
13Ul TH eunpedo..y
tpul
IERL EAR S SRR
1OPID8 =: XD IWaT
100198 =: Xy 3IdJY
uibag
t3 408N BINPBDOUY

(Ayreuejuyr ybiH)

($40 JO®IND)

tpul
1(3821°p1e) 43Ut
1aROPRe =: XJ"3Isd1
100108 =: Xy 3@l
uibag

{uo Jos.un)) fUOB INT] BINPEDO LY

tseyn : PLESY &}
fues [00q : PUNO 4@ 4
13x@) H) (Neay
1834 : x@pul
‘aubiyy
‘3sen
carey
‘uz
fasbe3u] : Jequny
(910U a3 : abeydwa
ttey1buraig H 18
Iter1buyalg : AJjugdwe |
I[ey1durng : uos 1 aedwo’)
10916UT43IS O (PRAT " "T1AwIIY : abey
1Ay I0UTIIS 30 (901" 1]Awsay : Aa3ul
13Insey H FY P21 YA
13 » aabajug : Juno) 1SNOD
fpus
Isabajur : sbwr4 ‘53 ‘SA ‘1A ‘IS ‘dA ‘xa ‘xI ‘xa ‘xv
pJoDal
= 3Insay 3dAL
tystuty 3dv
4

‘sabed xsput Aue U 8y} 8DNPOId D3 JeIGPIOM YITM P IPS &g ued
ITYY ABIP O @TT3 IXKEY ¢ SI[IM UBYY ‘SBTIJIUS SBOY] JUO® [(IM S aequnu
abwd BUTPUOCDSBLII0D YIIm ‘satijzus Dutils @p@l O3 dn Aeluw ue L 1 1-3 VX- P

cAOyINe By} AQ USIFTam

pue paubisep ‘wajisAg aseqeieq °Ju]l ‘spooy O-J8uU3 BYy) 403 UOTEIuaWNDIOpP
ay3 Ut pasn swis} ;0 bBurist| d138Qeydiv ue ®3wesd 03 pasn Arreurbiig
"GB/G ‘UO3IBNOH [AQ UB3IITUM ‘sETLIUE 30 X3AN] ue acnpoad o) wwubouy
camybiy 10 PrgA (Edsey OQun)| seusinbeu ‘sieIndwod §0Q-Id/SW 404 UO IS IS
>

t (83 Nsay‘IndIng ‘ INdu]) yIXIGN] wesbouy

1t burimgn

31

The Computer Journal / Issue #23

RHERBRBEABAABBRR DR B AR B RBERRBRBRBRED N BN N

‘puU3
$435410
fumMoqgpunog
Iystut 4

183 1M

IEARFEL FRIT]

t (IUb 1Y) pemy

;) @3 Lam

(ST 1)AXDL109

tjrogaeeys

)@Y Tam

$(ST1)AXDLO9

t(GZ°88° 1 1Hmopuim

fumogpunog

1s®1.3u3389

fdnpunosg

1811 ypeay

A =: xapujp

(1y43guwaey a2 N5

1pu3

fysiuty ojog
t 40 s4azpunog
1(.°°"ON1LYOEY ‘umath sweu 3714 ON.)uUT®) TuM

1000138 s88.4) | ‘«8pUl‘, = paSIuU] SPUOdEY [®30)

(.7 @113 Burzuog ‘jIum ssvaiy

(J83Bwe . ed IBIT4 S1 BURU B[14) f.XAN" . +

t4d35410
uibag
(ua1qoud ¢ = B.sy3} ‘sweu B[ty OU 41) US4} @ = Junoweawy 31
uibeg
¢ S.8H s3selg D160 welbouy urey e)
tpu3
tduyg
$IUND] =: xapuj
t(®3nsa)y) as0()
tpuzy
t(r3uno)jebey ey nsay) uipeay
t (48138 83 [nsay) peay
tpu3
1483387 4+ [IUNODJAIIUT = [IUNODJAIIUTY LBYY (.. ¢» 183387 31
§ (483318783 [Nway) peay
u1bag
o0 (.°, <> 4®33®7) sprym
V.. =1 [3unD)JAaaul
. 1 + 3uno] =: juncjy
f, . ~: ums3jen
utbayg
©0 ((®w3[Nwey) 403 ION) & [rym

fpuy
tdiygs ojog
$ (DOD1) Aw 1ag
FC.3714 MIN.)@ 1M
(5790 AXOLO9
utbag

Usu) punojerty joN 4]

(B = 3INB8.40r) «: punoyeity

t(.3714 4034 OINI¥IIHD

(B3IW1<® 1 yutp wouy S114 x@put speay)

{(+18)
-AiumJ..xva.l.K
(-18)
(YIS s Nsay) UD 1esy
1(0001) Av(aq
ITOM BERS 4,)8 TuM
$438410
@ =: Junon
utrheg
tdixg reqeq
181 rJpemy ®inpeiouy

[1-1%%]
$(aZ°1)AX0109

t(,"®113 BuyIItum PBYSIUTY ",) 831um

f(ryunoyjebey:

10,3719 ONTLINM

ISP 0} 8113 «@PUY B83 TuM)

tenurjuo) 0309 usyy ((,pus,
(PUJ, = [BPU]IAI3ul)

LN i

J(XBPUL’, = B114 WO} WPUODEY SNOIABLY 40 Jaquny

(S4NpE30U4 Al3ul w3eqg utew)

fLTIUNe]jAS3uT e Ineey) U ey Tum ©Q “8pul O} | w:

t(1'¥S) AXDLOD
_—IU—JI'KV.CO—U
Iuno) aogy
1(RIINNENy) 8} tamey
t (438 ‘n3neay)ubrasy
1 (0001)Av 18g
ITeM BReSTy,) @) Tum
t495410

uibeg

81138310 @npad0uy

tpul

fugs.uny

®pul w: xepup
isnutjuey

1doo ojog

T + %8pul =: xepuj

14408407

H(Cxopu] Jebey) upray

t(A®IBYM*19) AX0DL109D

= { %@puljAajul) so

T -

40 (L,AN3I. = [*BPULIALUR)) 3]

f ([*®puU)AI3ul) pray
f(A®IBYM T 1) AXDLOD
.COILJU
13U T
e 1.)831um
! J'yixepul)e3yam
L (AB1mym ‘g)Axojop
13ugon)
:dooy
$(1°31)AXOL09
1(ZZ'98'9 1)mopu Tty
13Ul TR
_— + X.UC~ - Hapujl
tpu3
BLEIE
faugon
1(SZ* 1) AXD308
utbeg
Uy} puno4EITy 4]
ta131)ebey
{3000
_LUML—U
uibeg
fenutjuo) ‘doo- tegqe
-I.uLUCW&UQ BANPBOO A4

32

An example of an index for Issue #21 of TCJ is shown below:

A

ADC Systems, 19

ADC Systems - Applications, 21

ADC-1Data Acquisition System - Ad, 4
APROTEK 1000 - EPROM Programmer - Ad, 26
Advertiser's Index , 50

Affordable Engineering Software - Ad. 12
Alliarice Computers - Ad, 44

Analog Data Acquisition and Control - Ar, 19
Analog Fundamentals, 19

Applications - ADC Systems, 21

B

BDS C Compiler - Ad, 7

BERSEARCH Information Svcs. - Ad, 33
BMON - In-Circuit Emulator - Ad, 28

Back Issues Available - Feature, 48

Basic-52 Computer/Controller, 43
Blankenship BASIC - Ad, 21

Books of Interest - Feature, 32

Build the Circuit Designer IMPB - Article, 35

C

CD-1 MPB - Construction of, 38
CD-1 MPB - Parts Diagram, 39
CD-1 MPB - Programming, 35
CD-1 MPB Parts List, 40

CD-1 Memory Board Schematic, 41
CTM - Ad, 38

Classified Ads - Feature, 49
Clockworks - Ad, 43

Construction of CD-1 MPB, 38

D

DIP Components - Removing, 14

Data Acquisition Software - Ad, 50

Desgn & Applicat of Sm Std Components, 32

E

Echeion. Inc. - Ad. 45

Extend-50, 43

Extending Turbo Pascal - Article, 2

F
Functions - Pascal, 2

G
GEMINI Robot - Ad, 17

H

HD64180, 52

HD64180 Communications Software, 50
HISPEED PAS - Program Listing, 25
HISPEED.PAS - Program Listing, 29
Helping Hands - Soldering Tools, 17
Higher Sampling Speed for ADC-1, 42

1

Intellicomp - S-100 Board - Ad, 18

J

JERRYCO, Inc. - Ad, 44

K

Kaypro 4-84 Screen Attributes - Table, 5

L
LOGGER.BAS - Program Listing, 26
Lawson Labs, Inc., 50

Linear Optimizer - Acme Computer Company, 42

M

MICROMOTION - Ad. 47

MMS FORTH - Ad, 22

MPB Block Diagram - Circuit Designer 1, 36
MTBASIC - Used for ADC operation. 31
MTBASIC Compiler - Article, 10
MasterFORTH - Ad, 47

Microcomputer and Interfaces - Ad, 31
Microport 32, 43

Mid-Level Languages. |

N

NGS Forth - Ad, 20
NOLIMIT - Ad. 47

New Products - Feature, 42

P

Pascal - Variable Storage. 3

Pascal vs. BASIC, 2

Portapac, 51

Printed Circuit Boards - Unsoldering, 33

The Computer Journal / Issue #23

Procedures - Pascal, 2

Programmable Microcontroller - Basicon, 42
Programming the CD-1 MPB, 35

Public Domain Software Center, 39
Publisher's Statement, 1

R

RAM 80e - Ad, 43

ROMabie MTBASIC, 42

Real World Computing, 19
Resolution - Analog/Digital, 20

S

S-C Macro Assembiler - Ad, 34
Solder Bridge - Removing, 11
Solder Suckers, 9

Solder Wick, 11

Soldering - Theory, 8

Southern Pacific Limited - Ad, 37
Surplus Parts Resource - Ad, 44

T

TBASIC, 50

Technical Engineering BASIC, 50
Televideo TPC-I, 51

The Computer Corner - Column, 52
Turbo Pascal - Include Files, 4
Turbo Pascal - Tutorial, 2 -

0)
Universal MAC INKER, 43
Unsoldering: The Arcane Art - Article, 8

\4
Vendors - ADC Systems, 23
Vendors - Soldering Tools, Boards, 34

w
Wabash - Diskettes - Ad, 30
Write-Hand-Man - Ad, 26

Z

Z System - Ad, 45

Z-System - Ad, 13

280 Plus, 52

Z80ASM - Assemnbler - Ad, 15

'For a magazine so full of technical reference material as The
Computer Journal, it's well worth the 30 minutes or so that it
takes to index an issue. If EACH issue is indexed as it arrives,
then the same file can be used to make a master index that
spans more than one issue. If my example had been part of a
larger plan of that type, each page would have been entered with
the issue number first, such as :

Z-System - Ad, 21-13
780 Plus, 21-52
Z80ASM - Assembler - Ad, 21-15

Any small errors that are made while entering the subjects
and page numbers can safely be ignored, as you'll have the op-
portunity to make corrections when you go back with the word
processor to format the file into a printable index. If you notice
too late that you've flubbed an entry, just make a note of it and
re-enter it correctly. When you edit the sorted file you'll be able
to make the correction easily.

Summary and Conclusion

INDEXER is a program that finds use in many different ap-
plications. It can keep track of technical articles, catalog small
electronic parts in numbered bins or drawers, keep track of bot-
tles in a wine cellar, or catalog a butterfly collection in
alphabetic order for easy reference.

Since the file that’s produced is a standard character text file,
it can easily be formatted into a printed index or used as the in-
put file for a program to search for records and display them to
the computer screen.

INDEXER could even be used to keep track of program and
file names, and the number of the diskettes that they’'re on, for
anyone who doesn’t already use a system like MCAT.

GetStr Function for Keyboard Input

Finally, as advertised eariler, here’s an example of the GetStr
function that I use in many programs. It provides a way to ob-
tain data in string information, and to be able to read the IBM
function keys at the same time. If a function key is pressed while
the string is being entered, then the string that’s returned will
contain only ‘F1’ through ‘F10'to represent the function key that
was pressed, regardless of what was being typed up to that
point.

This means that every section of a program that gets
keyboard input from the user can have a ‘bail-out’ key, such as
F10 or a HELP key, such as F1. Even if another entry has been
started, the function will still return the value of any function
key that’s pressed.

If there are other characters that you would like your version
of GetSTr to recognize, be sure to add them to the case structure
as shown. In your main program, don’t forget to declare a

TYPE STR=String[30] (or other length)

so that a string can be returned by this function to the calling
logic.

Using GetStr in a program is as easy as assigning to a string
variable the value of GetStr. To input a name—but be ready to
leave the procedure if an F10 key is pressed, you might code a
couple of statements as shown in Listing 2. ®

The source code is available on MS/PS-Dos, Kaypro 2 SSSD,
or AMPRO 5.25 inch DSDD for $10 postpaid. Inquire about other
formats. We are planning on having our RBBS on line in May,
and these files will available on the board at that time.

(Listing 2 on page 43)

The Computer Journal / Issue #23

33

The AMPRO Little Board Column

by C. Thomas Hilton

W ell, after months of learning the ins, and outs, of the AM-

PRO® 1A CPU card I received the newer 1B system for
development. While the 1A is still available, it is available only
in OEM quantities. About the only place you can get the
ORIGINAL LITTLE BOARD is through some of the mail order
houses. The 1A CPU does offer a cost advantage, but the 1B is
far more powerful for industrial work.

The 1B CPU has the SCSI bus on card, instead of requiring an
adapter option, plus an 8 bit input port. The system ROM may be
expanded in capacity, and there are a number of jumper options
for various system attributes. I swapped the 1A CPU card in my
Series 100 with the new card, and that will be one of the projects
we will discuss this issue.

Making the Change

The first thing to do is to unplug ALL the cables from the rear
of the enclosure. There are some nasty voltages exposed in
there, and the packaging is tight enough where it just isn’t worth
the risk to have the power line connected. I aiways feel better
when I can look at the back of a chair and see both ends of the
power cable. I don’t lose as many readers that way.

T Remove the four screws on the long sides of the enclosure,
on the bottom of the device. They are the ones set in the slots
where the top folds over the bottom plate.

O There are three more screws on the rear face of the
system, remove them as well. Put the screws in a cup so you
don’t lose any of them. The case metal is thin, so we have to be
careful not to put the screws in too tight, when we put it back
together.

C The top just slides off toward the back of the system.
Remove it now.

O See the twc; drives on the right, as the system faces you?
Find the “L’’ flange where the power supply is mounted on the
left, and the 1A CPU card is mounted on the right, next to drive
L(A.,9

G Don't try to remove the CPU mounting screws, there are
two on the bottom edge as well as on the top edge. We'll have to
take the drives out to get at everything. See that “‘P”’ shaped
aluminum bar on the top of the drives? That holds the sliding
case cover in the proper position. Take out the two screws that
hold the ‘“P”’ bar to the two disk drives, and save them in the cup
as well.

O Lift up the case and locate the two screws in a line under
each disk drive. Remove them, but only one set at a time, star-
ting with drive *‘B.”

T Mark the cables with a felt marker on all connectors. Mark
the cable side and the board side of each connection. The next
time you will know what goes where, but the first time, let’s
mark them.

O Now then, drive “B,” with all the cables removed just
slides straight out the front. It sometimes jams. Just pull it
straight out, but don't force it. If it gets caught, just push it back

in and try again. Place the drive out of the way, but so we can
tell which drive is which. Yes, it does matter which drive is
which. They each have different jumper settings, though we
don’t need to worry about jumpers for this project. On the lower
right hand side of the drive you will see several white boxes.
There are numbers where the boxes are. One box is near the
number ‘2" on the circuit card, so this is indeed drive “B.”

T Take out drive ‘A" in the same way we removed drive
X3 LA
B.

— Fine, now see the four screws around the edges that hold
the CPU card in place? Don't remove the card yet, I want to
show you something. Look at the flywheel side of the drive. The
holes on the CPU card and the disk drive match! The CPU card
is designed to mount to a standard 5% inch drive. The circuit
board sets right down in the recess. It adds only about a half inch
to the drive’s profile, though we always design for at least ¥ in-
ch clearance from the card or flange, when it is above the card.

~> Now mark all of the cables, to be sure we get them all back
in the same place, and remove the mounting screws. Be careful
as the card can be damaged by static electricity, even the
amount on our bodies. Just handle the card as you would a
phonograph record, along the edges. Good PC designers always
put the power and ground bus structures around the edges. Lay
the old card out of the way, for now.

T The new CPU comes in a brown plastic bag, with a yellow
caution seal. If the seal has been broken there is no way of
telling if the board is good or not. AMPRO tests the boards and
seals the package before they ship them. The bag is conductive,
s0 there is protection from static, and handling by untrained
peopie. Now open the bag by ripping the seal, and remove the
board, touching only the edges.

T Put the new card in the machine in the same way we took
the old one out. Put all the mounting screws back in, snug, but
don’t screw them in tight, just snug. If you tighten them down
too far you may damage the card.

Z Put all the cables back on the card. We marked them so
we'd know where they went. AMPRO made the new card with
all the connectors in exactly the same places, nice of them to do
that eh?

2 Getdrive ‘A" reconnect the cables, and set it in place. Lift
up the device and replace the two bottom screws. Don't tighten
them down as we will have to adjust them for proper placement
later. Don't put in the top screws yet.

O Now replace drive “B’’ in the same manner, making sure
the cables are all in the right places, and that the two bottom
screws are not tightened fully.

O At this point we want to assure that the drives are set
properly in relation to the case front. I leave an ‘‘ease’’ space of
about 1/8 inch in the center between the drives. This lets us use
that little plastic flange on the drive bezel to position each drive
on the outer edges of the case opening. Now tighten the two bot-
tom screws to set the drive in place.

34

O Locate the ‘‘P” shaped positioning bar. Mount it with the
thin edge to the left, the wide portion over the drives. What this
piece does is position the outer case in relation to the heavy front
panel. We want to set this bar as close to the front of the en-
closure as possible, and make sure there is an equal space on
each side of the bar. This will keep the sliding case top properly
positioned. Just to be sure you can slide the case back on, and
move it back and forth, with the ‘“‘P’’ bar loose, to see what I
mean. Once positioned, tighten the bar mounting screws.

O Slide the case back on, and replace all of the case mounting
screws. BE CAREFUL! The metal is very soft and will strip
easily if you try to tighten the screws too tight.

.Now power up the system and assure that everything works
properly.

KTERM Update
I really should get a terminal I guess, but the Kaypro® does
the job until I see what I will be doing in the 16 bit developments.

LISTING ONE

Hermit

Program: KTERM.COM
Function:
The original vers:on

Index: KTERM.COM
KTERM. CRW

LIST

TITLE "KTERM.CRW ’

NLIST
$
s SI0O A Equates
§
TXRDY EQU 4 $1S10
RXRDY EQU 1 1S10
DATPRT EQU 4 §1SI0
STATUS EQU [1810
DTRWT EQU 68H 1810
DTRRDY EQU SEBH $18S10
]
[System Equates
s
pos EQU S

ORG 100H

8 bit data word
{ stop bit
Even Parity

LD A, 18M
ouT (BTATUS) ,A
LD A, 1
ouT (8TATUS) ,A
LD A,
ouT (STATUS) , A

LD A3

(c) 1985 C.
(WordStar Version)

The Computer Journal / Issue #23

The original version of KTERM, written in TURBO
PASCAL® , served to interface the Kaypro 4-84, and later
Kaypro versions, to the AMPRO Series 100 as a ‘‘dumb ter-
minal.”’ The original KTERM was suitable for use in all ap-
plications except the use of WordStar® . The overhead of the
TURBO runtime library, coupled with the internal functioning
of WordStar, required faster data processing by the Kayp.o.
The patching of WordStar’s internal delay tables did nothing to
improve the situation. This CROWE assembler version of
KTERM is fast enough to handle all known commercial, and
public domain software applicable to either machine. This ver-
sion has replaced the TURBO PASCAL version for all tasks.

The primary difference to the user, other than an 8K reduction
in program size, is that the ‘“‘* _ character, (control/un-
derline), is now the escape character. The null character is
used, in the DOS direct console function request, to indicate a
lack of keyboard activity.

Software’'s

Crowe Assembler Source Code File

Thomas Hilton

of KTERM, written in TURBO PASCAL, was

found to be incompatible with WordStar. This version of KTERM, written
in the CRONE assembler, corrects the defects of the original version.

Author: C. Thomas Hilton 12/146/85

transmitter ready mask

data receiver resady mask

data port

status and control register
data terminal busy data mask
data terminal ready data mask

$BDOS jump vector

Initialize The Kaypro “Serial Data Port” to:

As well as preserving the functioning of the standard keyboard channel

The Computer Journal / Issue #23

HERALD:

e IR IR R

>
-
z

ouT
LD
ouT
LD
ouT
LD
ouT
LD
ouT
LD
ouT

LD

(STATUS) , A
A, PELH
(STATUS) . A
A4
(STATUS) , A
A, 47H
(STATUS) . A
A,S
(STATUS) . A
A, BEBH
(STATUS) ,A

SP,STACK+146

jdefine a local stack for DOS calls

Print Herald On Kaypro Screen

LD
LD
CALL
JR

BYTE
DATA
DATA
BYTE
DATA
DATA
BYTE

DE ,HERALD
BC,9
pOs
MAIN

26

Jjump over herald print string

iclear the screan

»

‘Hermit Software’’s KTERM Dumb Terminal’
19 ! BYTE 13 ! BYTE t@

13 ! BYTE 1o

Prass ~_
BYTE 10 ! BYTE 14 ! BYTE ’s’

To Abort’

Enter Primary Function Loop

The only operator control is ~_

as an abort character. A null character

cannot be used as it is trapped by the keyboard input scan and used to
indicate that no character is ready from the keyboard.

A, (STATUS)
RXRDY

NZ, RDCHR
BC, 6

DE, 6FF M
pOs

A

NZ, SNDCHR
MAIN

fget the receiver status byte

fmask to see i1f an character received

fnonzero means yes

jelse check console status for keyboard
jcharacter using function &, FFH is input flag
jmake the call

l1zerc value (null) means no character ready
{nonzero means we have one to send, no echo
jrepeat loop

Print An Abort Message Before Passing Control Back To Kaypro

LD
LD
cAaLL
JP

BYTE
DATA

BYTE

DE, BYE
BC,9
DOS

[

13 ¢ BYTE 1@
'Exiting KTERM®

jreturn to operating system

BYTE 1@

Primary Output To Computer Vector

Alsoc checks for an abort character, which never gets sent to computer

1 detected. ~_

1FH
Z,ABORT

AF

A, (STATUS)
TXRDY
1,GCHR1

AF
(DATPRT) ,A
MAIN

is abort character.

I1is character ~_§ or escape character?
jyes, abort

felse save it

fis the transaitter espty s0 we can send?
imask status byte to find out

jzero means transmitter is busy sending
fyes so get character back

jand sand it

fhurry back to the main loop

Do - -

DCHR:

LD A,S
ouT (STATUS) , A
LD A, DTRWT
ouT (STATUB) , A
IN A, (DATPRT)
LD E,A
LD BC, 2
CALL DOS
LD A,S
out &),A
LD A, DTRRDY
out (6),A
JR MAIN

'

STACK: RSRV 16
END

The source code for this simple program is shown in listing
one. If you are following my ‘‘NEW-DOS" project, you should
have a copy of the CROWE assembler. This assembler is
available from the new TCJ Public Domain Library, and upon
the NEW-DOS project disk.

Designing Turnkey Systems With MENU.COM

While awaiting the manual for ZCPR3, I have been working
with the ZCPR3 “‘shell’” MENU.COM. This is a very powerful
system level menu program. To support AMPRO users I have
developed a number of ‘“turnkey systems,” based upon this
utility.

All the turnkey systems I am working on are prepared using
the stock AMPRO ZCPR3 CP/M operating system, revision C,
AMPRO Part Number A60101, on a dual floppy Series 100 using
the 1B Little Board. MENU 3.6 is a true ZCPR3 utility, and you
must assure that you have either properly installed the utility,
or are using the AMPRO system noted. AMPRO has installed a
number of utilities on the revision *‘C”’ system disk. All that is
required is a good text editor to create powerful turnkey
systems.

If you acquire one of the systems I have configured, several
steps are required to make the disk operational.

Using your normal system working diskette, format and
sysgen a blank disk. No operating system is supplied on any TKS
or TCJ User Library Disk. Transfer the entire contents of this
disk onto your freshly prepared disk with your favorite copy
utility. PLACE NO OTHER FILES UPON THIS DISK AT THIS
TIME!

With the new working copy of the TKS disk in drive “A’” go to
the CP/M prompt and enter:

CRC <RETURN>

your TKS disk will then report upon the status of all files by
checking the CRC value of each file now on the disk, with the
CRC values of the files at the time the disk was created. If you
have made an accurate copy, all CRC values will match. In the
case of a mismatch, recopy the file until all values do match.
Now transfer your terminal attribute file, (MYTERM.Z3T), to
the working disk. It is assumed that your sysgen image has
properly set your operating environment to match your ter-
minal. Transfer also, at this time, the following AMPRO
Utilities from your system working disk onto the TKS disk:

LDR.COM
MENU.COM

The Computer Journal / Issue #23

1f dNe GCet Here We Have A Character From Computer

jselect the proper SI0 register for controls
Iset the wait flag

jget and print incoming

tcharacter

$through standard DOS call so Kaypro can keep
ttrack of cursor position then

jclear the wait flag to tell computer we are
jready for next character

tand hurry back to main loop

fa 16 byte local stack

Using the AMPRO CONFIG utility, modify the Autocom-
mand, (option 5) to “TKSTART.”’ Now place the TKS disk in the
system drive, and reset the computer. If the menu does not
properly appear on your screen, repeat all of the above steps. If
this fails, consult your AMPRO User Manual.

When the menu appears, press the ‘‘H”’ key to enter the on-line
help system. The first screen of this system will describe any
other programs you may need to complete the system. While I
have attempted to build turnkey systems using only public
domain software, there are cases where you will have to install
a commercial program of choice, such as a text editor. The help
sysstem will describe what is needed, and how to install the
program of concern.

If you have a public domain program that will do the job of
any commercial program required for a TKS disk, send it to me
and I will modify the TKS disks concerned to use your program.
In this way you can help to do your part to support the people
who are supporting you.

Developing your own turnkey system is not difficult. A simple
turnkey system is shown in Listing 2.

All MENU files, (MENU.MNU) begin with a statement begin-
ning with a dash. This defines the global options that are to be
used in the operation of the MENU system. In the example the
file begins with:

.H JC 30)0 YCOIC O3C 3¢ 1T 3L 3¢ 30 3¢ 3C 30 3t 3t a0 rC 0C IC

The statement “-dpx" states that MENU 1s to display the
acreen which $ollows, scroll the screen before displaying 1t, and
allow & C access to the CP/M command line. The options
available at the opening giobal declaration are:

d - Display text screen which follows. A text screen is 22
lines of text.

P - Scroll the screen before displaying text screen.

x -~ Allow exiting MENU to the CP/M command line with & °C,
(control-C).

¢ - Display command lines ss the progres runs. This is &
debuqging option that is used when you et a "Structure Error.”

A text screen 1s bracketed with the pound sign, ("#”). The
proper format for a text scresen 1s:

I
i
|
I
f
I
i
|
i
1
{
1
|
i
1
|
i
& (appearing es first character)
22 lines of text

i
i ® (and another pound si1gn as a terainator)

The text screen may contain nearly any character, except, of
course, the pound sign. If your terminal is capable of reduced
video or other highlighting, and you have installed the command
in your ‘MYTERM.Z3T"” attribute file, you may insert the
command for these attributes in the text file. These attributes
are indicated by the characters: '

The Computer Journal / Issue #23

37

LISTING 2

-dpx
L
3C 1€ 30 3C 3C 3C 3C 3C 3C 3€C 3C 3¢ 3C 3C 3€ 3C 3C 1€ 3I€ 1L IC 1€ 3C ¢ 1t It
HERMIT SOFTWARE?"'™S
E-BASICAS4 PROGRAMMING 8YSTEM
(C) 1986 C. Thomas Hilton

3C 3L 3C 3€ 3C 3C 3€ 3C 3C 3C 3T 3C 3C 3C 3C 1C 3C 3IC 3€ 3IC 3IC IC It IC IC IC

E-BASIC24 System 091

E - Run Editor (WordStar) C - Compile Source File
R - Run Compiled Programs K - Kill “.BAK" Files
1 - Copy/Format Disk 2 - Sysgen Disk 3 - 8how Directory
4 - NEWSWEEP 287 S - Configure 6 - Distribution Info
______________________________ M - Manual Comeand _________ ____
*
1 amprodsk
2sysgen
3td
ans
Sconfig
6232
Kera #.bak
Ews

M!"Enter Cossand: *
C!COMPILE "File Name? *
RRUN "FILE NAME? "
[
3C 3C 3C 3C 3C 3C 3C 3C 1€ 3IC 3C € 3C IC 3C 3¢ 3C 3IC 1IC 3C 3C 3C IC 3IC I IC
COPYRIOHNWT NOTI1CE
AND
UsSE ABREEMENT

30 30 € 3C 3C 3C 3C 3C 3C 3C 2€ 3€ 3€ 3L 3€ 3C 3C 3C 3IC 3C 2C 3C 3IC 2€ 3IC IC

E-BASIC24 has been derived from the BASIC-E compiler written at the

Uni ted States Navy’s Postgraduate School at Monterey Californtia, by
Gordon Eubanks Jr. That compiler is then public domain in the purest tera that
may be applied.....

(and 80 on for 22 lines of text per text screen)
[]

[)
(another text screen of 22 lines)

~ A - turn on attribute
~ B - turn off attribute

These attributes are entered into the file as normal text. Wor-
dStar users are familiar with the technique of inserting printer
commands in their text. To implement these codes the WordStar
user would enter:

~PA - turn on attribute
~ PB - turn off attribute

How control characters are entered into a text file with your
favorite text editor may be found in that program’s manual.

The text screen of 22 characters is closed with another pound
sign. What follows this, ‘end of screen marker,"” should be the
commands to be acted upon by single key press commands, or
additional menu screens. The example below presents examples
of MENU command lines.

lamprodsk

2sysgen

3!d

4ns

Sconfig

6:2

Kera *.bak

EWS

M!‘Enter Command: ”’
C!COMPILE ‘“‘File Name? "’
RRUN “FILE NAME? "

Each line following the screen terminator represents a valid
ZCPR3 command line. Commands are entered as they would be
entered at the “*‘A0> "’ prompt, but must have the reference in-
dicator noted in the first text screen. Additionally, functional op-
tions may be inserted into the command structure.)

In command lines ‘1’ and ‘2"’ no MENU command line op-
tions are present. When the “1"" key is pressed MENU will load
and run AMPRODSK, passing control of the system to that
program. When the program has terminated system control will
be passed back to MENU. This is the Ampro definition of what a
“‘shell’’ program does.

In MENU command *‘2” the SYSGEN program would be run
in a manner similar to that of the AMPRODSK program. This
simplistic SYSGEN command line may be expanded for users of
SYSGEN, Version 3. To place the system image on drive “B,”
from drive “A’’ the command line could read:

2sysgen/a,b,,

Command line “‘3” however, has a MENU option installed.
When an exclamation follows a reference character, MENU will
pause after completing the command sequence for a key press
from the operator and display the message:

MENU 3.6 - Strike Any Key -

The use of this option is desirable when displaying a directory,
for instance. Without it the directory screen produced by
DIR.COM would be displayed, and then immediately overwrit-
ten by the MENU text screen. By implementing the option:

3id

(which is a sorted directory program similar to DIR.COM) the
directory of the current drive would be displayed, and the
system would wait to redisplay the menu until a key was
pressed. Again, the command line may be expanded to include
more complex directory calls.

B:*.BAK;ERA

3!DIR * BAK;ERA
B:*.BAK;DIRB:*.*

*.BAK;DIR;DIR

The Computer Journal / Issue #23

Any command line that may be entered from the ZCPR3 com-
mand line may be entered from the MENU command line.
Command lines may be up to 200 characters, or the line length
determined by your implementation of ZCPR3.

As noted below there are other command structures as well.

6:2

Kera *.bak

EWS

M!‘Enter Command: "’
C!COMPILE “‘File Name?
RRUN “FILE NAME? ”

In the example *‘6:2"’ the pressing of key ‘‘6"’ will cause the
second text screen to be displayed. The colon, in this application
means, ‘‘GOTO SCREEN NUMBER TWO." In the example you
will note that the command lines for text screen one are ter-
minated by another pound sign. MENU assumes the text which
follows to be another valid text screen. The user must assure
that this is the case. At the end of that text screen another set of
command lines may be installed, up to 255 text screens and
command line sections!!! With this much power complete on-
line help systems are very easy to develop.

In the next set of examples file names and supplemental
command lines are input to the MENU command line.

M!“Enter Command: "’
C!COMPILE ‘‘File Name? ”’
RRUN “FILE NAME? "

The first of these examples cause the system to wait for a key
press when they have completed their task, as indicated by the
second character being an exclamation mark. The command:

M!‘Enter Command: °

allows a manual command to be entered as if at the ZCPR3
“A0>"’ prompt. The general rule is that the string following a
prompt enclosed in quotes will fill the vacant portion of a com-
mand line structure as shown in the next examples.

C!COMPILE “‘File Name? "
RRUN “FILE NAME? "

In my version of E-BASIC the compiler is named COM-
PILE.COM. Not an original name, but a fitting one. Too many
people want to complicate simple tasks. The compiler needs the
name of the text file it is to compile. MENU will ask for this file
name and place it into the command line in proper format for
the compile program to receive. In my E-BASIC the runtime in-
terpreter is named, ‘‘RUN,"” of course. The same concept used
to COMPILE a pregram is applied to the runtime interpreter.

This insertion of a file name into the command line is a truly
universal concept. The following concept is also available, as
might be applied to my Modified Crowe Assembler:

X!CROWE "‘File Name? "".BBZ

which would insert the file name and add the assembly toggles
as if the command were entered at the command line as:

A: SYSTEM>CROWE CCP.BBZ

This series of text screens and command lines may go on
nearly forever, and whose format is nearly ‘‘free form.” The
basic structure of the MENU file is as follows:
-dp (global display options)
#

text screen number one

The Computer Journal / Issue #23

Zommand lines

:ext screen (if text it is screen 2)

:ext screens or command lines for text screen 2
:nore screens and/or command lines

:# (end of file marker)

The only real defect I have found in using this shell is the
limitation of a single key command. While this is a normal, and
very powerful system, I have found several cases where a two
character command would have made life a great deal easier.

There are other MENU commands which reference ZCPR3
command formats, which are loosely referred to as
‘“‘variables,” by the sparse documentation in the Ampro User
Manual.

$D - Current Disk

$U - Current User

$FN - Areference to a ZCPR3 system file name and type num-
ber 13 N! b

$Nn - Areference to a ZCPR3 system file name number “‘n"”’

$Tn - A reference to a ZCPR3 system file type number ‘‘n”’

$$ - Place a $ in a command line

I may be retarded, but I have never been able to make the ‘$”’
reference, or ‘‘variable’” work on the basic 60K ZCPR3 im-
plementation.

In multiple text screen files there are also commands for
moving about within the menu system.

<RETURN> - Rewrites the current menu on the screen

~C - Control C exits to system if ““x’’ option is installed in
opening option list, (-dpx).

* - Jump to first text screen, (main menu).

< or , - Jump to previous menu. This command allows the
comma to be shifted, (‘<’’) or entered unshifted as these
characters are generally found on the same key.

> or . - Jump to next menu. This command allows the period
to be shifted, (‘>*) or entered unshifted as these characters are
generally found on the same key.

$ - Jump to the “‘System Menu,”” where a password is supposed
to be required to use this function. The Ampro manual documen-
tation makes no mention as to how to implement this function,
and [have yet to make it work on my system.

In the near future we will take a close look at ZRDOS. I have
used this operating system to implement the AVS Voice com-
puting system for the visually impaired. There are several
critical tests I wish to perform upon ZRDOS before rendering a
final evaluation. When I am given a product to review, or
evaluate, I use it for a reasonable amount of time, testing it
fully. I feel these are things that should not be rushed.

This brief introduction to MENU.COM should, however, allow
you to begin designing your own turn key systems.

AMPRO User Disk Library

By way of introducing the library, allow me to give a bit of the
history of this library, and credit those who have made it
possible. In the beginning there was TCJ. I met TCJ while
working to develop technologies for the disabled concerning the
Ampro Series 100 microcomputers. I needed a place to
distribute my wares, most of which are released into the public
domain. TCJ needed a user disk library. TCJ donated the disks,
I contacted the librarian of the Charlottesville Virginia Kaypro
User Group, (CKUG), who filled the disks with what they had.
And it came to pass that no one cared much for the way most PD

—

| @ 2RS232C Senai Ports (50 38,400

. ®Only575x7.75 inches, mounts

—
Little Board™/ 1355495

High Performance, Low Cost PC-DOS Engine

Boots 18M PC-DOS
{not included)

@ Three umes the COMPUTING POWER of @ SCSI/PLUS™ muit-master (/O
aPC expansion bus
® Data and File Compatible with 18m PC, ® Software Included
runs "MS-DOS genenc” programs ¢ PC-DOS compatibie ROM-BIOS boots

® 8 MHZ 80186 CPU, DMA, DOS 2x and 3x
Counter/Timers, 128/512K RAM zero ® Harag Disik support
wait states, 16-128K EPROM * OPTIONS:

® Expansion board with:
® 128 or 519K acaitionai RAM
® 2 Sync/Async RS239/42¢
senal ports
* Battery backed Real Time Clock
© 8087 math Co-Processor
directly to a 5-1/4° disk drve ¢ Buffered 1/0 Bus
® Power Requirement: »5VDC at 1.95A, © STD Bus Acapter
+12VDC at 05A; On board -1V ® Utlives source code
converter ® TurboDOS / Networlang

BOOKSHELF ™ Series 200

Fast, compact, high quality, versatile PC-DOS system
Three times the COMPUTING POWER or a PC
Priced from
$1295.00
10MB System
Only $1945.00

® M/ Micro Floppy Controlier
(1-4 Drives, Single/Doubie Density,
1-2 sided, 40/80 track)

baud), 1 Centronics Printer Port

Data and File compatibie with IBM
PC-DOS 2x and 3x

Software included:

® PC-DOS Compatibie ROM-BKDS ooots
DOS 2x and 3x

& Harg Disk Support

® T/Maker It — Word processing,
spreadsheet, relatonal atabese,
speiling checker, and data
encrypt/ decrypt

® Runs “MS-DOS generic” programs
(Dbase I, Mutbipian, Wordstar,
Supercaic €, Turbo Pascal, Fortran 77,
Microsoft C Lattice C, IBM macro
Assembier, intet compuiers & tools,

® Works with any RS232C ASCH terminal
{not included)

Compact 7.3 x 6.5 x 10.5 inches,

12.5 pounds, all metai construction
Based on Littie 8oard/ 186

® 512K RAM,NO wart states

Expandabie:

Floppy expansion to four amves
® Hard disk and tape expanson
@ SCSI/PLUS™ muit-master O

® Two RS523% serial ports ous
& One Centronics prmter port
® One or two 360 Kb floppy drves
¢ 10MB internal hard disk drive option
DISTREBUTORS
ARGENTINA: FACTORIAL SA., (1) 41-0018, MICROCOMPUTERS, (613 500068
TLX 22408 BELGIUM: CENTRE BRAZR: CNC-DAIA LEADER UTDA

ELECTRONIQUE LEMPEREUR, (041) 234541,
TLX 42621 CANADA: DYNACOMP
COMPUTER SYSTEMS UD, (604) 872-7737
ENGLAND: QUANT SYSTEMS,

{01) 253-8423, TLX 946240 REF 19003131
FRANCE: EGAL+, (1) 5021800, TLX 420893
SPAIN: XENIOS iINFORMATICA, 593-0892,
TLX 50364 AUSTRALIA: ASP

(41) 269-2262 TLX 041-6304 OEMMAMK.
DANBIT, (03) 66-20-20. TLx 43954
FINLAMD: SYMMETRIC OY © %8% 4
TLX 121394 ISRARL: ALPHA "Elneay 3
UD, (3) 451695, TLX 341006 ' Sw@DEse
AB AKTA, (08) 54-20-20, TLx " 1" Ul
CONTACT AMPRO COMPUTERS ~at

TEL. (415} 962-0%30 TELEX <@ n9

B 8 (o, BO18S e o
TWoaDOS . Software 20, ~ < e
ASNtON-Tate, WOrdstar * ~a ~xw -
SUDETCaIC 2, SOMTMm. v T~ tem @t
Sorand. I, G MKTOSON T & e
MUDOWIN 4 MICTOSOR, "NC 8t

atbee, inc.

AVIR0

COMPUTERS NCOARPORATED
67EastEveryn~¢ « Mountamn View, CA Q4041 « (415)962-0230« TELEX 4G ol X5 J

The Computer Journal / Issue #23

40

z

nzZz
"z
e
19
»z

9
L T4
A9L
L14
99
vl
.04

191

"ri ya

1 3DUN0S

03 ssaidd>e Bujpseu

AT MA@ LWIQOM
AFS A" ZTILHGW
Ll 4 W03 " ol 0}

ZIX3

CWay) 88N 03 MOy puw 'S[D0} JNOA BUe euey ‘puvog

SINTIeI0w0D jeuosiad w4

11
fal 4
¥at
L[04

n9L
Az

304 * IsN-848d
204 ° WIAOH
WOO *
304° WIA0W

18
i dd

ZILWaN | NZZ

xat

NEY “S6MIAOMHX | 491

I LS 1A

hlg

200 “ W0I0LOYS
Y SELHON
wan - ALW
HOO " HICOKNY

ABOE CO9 "SNOT LYDINNWNOD —-

[vie by
W0J*

NN
J¥D

== A99L ZOO "SNOILYIINMNKNOD -~

“@po> adsnos puw sweubo.ud

I A9
L. [49
LI T4
I »9

€34 =Yy
L wapon
[)y N NN
HE° 1ZLRGW

D 181 IHIND
£00° NANOO-

“® 100} asey) pasu

1 e

nNoA ‘esjndwoss ey .o ‘a3newode (el 03 Bujob auw noA 4] *Awm UnoA 31 op “‘Jybya
3T Op O3 PASU NOA (¥ ‘WIGONX PUE * (BATINIEXT SEPOK) ‘X3 4O B8T)4 83008

I %ZZy uan”

AR]
ZO6° NNNKOD-

‘SpJaeog @133V} OYJ 403 BBIITIIIN pue ‘seeabo.ud BUD § ¥ D JUNWNWO D)

JYITASIDIOND 1 Ay

TSBAQ[OWS 83150 AsEAS 103 BMYT)
pus ‘sdiay uoijviedesd xwy

APIT HET°£B-SIXVL

W03 aNlamd
300° N3IIMISd
WNOJ* IBHON
487" 26NOSJ3
34D 1814340

¥E1 "W H05SM

J00° 1d4OLLSM
4871 " YV LEAHOM
WOD™ LAMMGAL
- 3IdALL
3040 ° 1103

304 "YYGNI WD

wWOoJ " NN

X3ANT
18 WEY * HHOM
18 o9 ° 2 IINOSNN
19 W02 " NYNL
»8 ¥a7 c6&-as

1
1
i
1
!
1
1
!

g
Az
"z
nzz
%9
L1s

nz
Lt
%9
Ay
"zZ9
"z
x9

«~BAUp asey) 30 euo, Aw uo
‘suoie ybnoua

Zz

1z
el 4
4z
1z
Az

WOJ*

JHI | %92 A" WOO-Y |

== HBFPE 199 °SNOI LYIINMWNOD --

‘asequlep
WHOD* 1M
HAB * “d
HOO® NIISS
wa” HioW

WO 41818403
[oie ld o]

|
!
1
'
i
1

8. AHJHNKN ®s.uno> 40
POPUTE B[OWIS ¢ ‘B1003 YILINM

38
bl 4
14
nzt
Az
"ol

¥ ZaNT 43N
WBZ " N3I3HI6d
HET" HOdOMd
¥871° DIni0e
J0a° Z¥Li103
Y418 WLldvD

== M98t 8PP ALITILIN -~

HOY © JdMA8TIEM
[ey SI6M
J00° X3ANIm
HOD L 1¥MI4AL
A °SONdL83L
W03 * 1103
NOD " HYANI WD

19
nz
*Z
L14
-
»z
a4

TWaY] BUOP BARY PINOYUS GM ATmM By} 9830U004 PU SEXEPU]
das) 03 =003} IvEU pue ‘.L03N3 BuldAl ® ‘siesn JOIGPIOM SO4 8[00)

¥E7° NOJOASM
NI “SISH/ P8
WOJ° X3IANIM
NO3J°LTHM3dAL
¥871° 31 150N
NI ASIDIOEO
HOO " YHd Y

~- NOBL (SS°ALITILIN ~-

L LA
b [J

TSSIIFIEIN

L1 24
1 %S
LI, 14

1 xzZ
1 »Z¢
t A
1 %@

*®@2%14j0

XL
t 1@y
[14
i 9
LI 24
1 Neg
LI} 4
e

W0J*° NN
199° NNWWNOD-

4@83uyad

4034834
WOD° ONIGLYM
HOD "8 1 IN0IMG
X3H* NIFYIS
000" AHdYW
WOd - aoo04
W0J° Z1L11Q3
[Ln-

ayy uj Apuey
srwy oM BusyH
ey 1434x
J00° SANKNISM
[e by (o]
WOD " INNOOM

808 " L14M3dA L
HE1'CI310NLS
WOD* D
109" anin-

BE LA R

ase ey} sbuisi a>unOs weaboud A3riran YIIM PO S
Ti8M Sava] 3 ,ued IEN(Oym BBDYY JOJ NEIP BY} ST STYY

YD LS 1 HDHD

ArEs e

1 4

303¥N0S

W02 " e L)

= BT 9P ALITILIN ——

i A9z
LI |

387" 30v 43I
909 10—

(EIBHIW(B IP UC BBTIOIDEITIP JUTId uasa 188 L]

304 AdALX
WOD " HSUM
HWOJ " avown
W02 vdi
20G° M08

!
t
t
1

1ol
Az
1= 0%
b 4
"z

TWAYY} PUSBWODSI PUR A[JUEIBUOCI XIN] PU Y14y asn 1
«BYITY. 8UY ‘WANDNAS YIIM 8100} juswebeuew ®[}) puw Ixey

WOO - 3dALX
J0a- 1817
- H3dAL
WO WANONAS
WOJ " 7W0NI8

"W/d3 Pavpuwis 30

$0 vol3Ie(as Bpim U

1 Az
LI T4
1 et
1 92
1 %z

WOJ ansx
W0O 4817
47" IL3dAL
WOD°© Snivis
W02 8

b 4 WOD " 138e8XH | A9Z 2J0a° INdY | T WOD* N | ¥Z 200" didu
L1} [el didd | A J00° IWNUNIN | 1Y OO IUNIM | %Z [e by avIy
18 #E7° 38084 ! 19F WOD° NWN 1 AZT1 WOD™ (PZJIMBN | %2 200° dJdIIMSEN
19 EL L AT I N2 W03 " A 1| 19 204 BRI T4 [0 g h)
AZ J04a° X3IANT t Ay [tia g X3IANI | AZ w02 d3 1 Ay ¥al” ¥sNg
L1 4 ¥@81° ¥SNdNa 1| Az J00° AYI4B8I1a | 1y HOO® AYWSIA t u¥ 38D " 1S1A4ADMD
b1 2040 ° M3 1ty w02 - J¥d 1 w2 J00° HMNYITID | AZ HOD " dNNY3ITD
a1 WOD A3IHI 1 19 300 °HdD-TWI | M9 WOI'WI-TRD 1 %2 [, 10 Be sd
b P4 WOJ® MOMSIE | Ay [Nvg | A2 [120 Bg 07N | e 1~ uin-
-~ A9LL S@OTALINILN ~-

*BurAatyd e

@114 04 peau Jene p,NoA BulyIAimae INOQE SN[‘swaIsAs enbo(e3w) pue Aueuqi
AZE WOD* INVA | M2 300 "MING L oHM

[4 WOD "MINSLIUHM | 128 ¥E° 1408 | HyS @I TINTWWN 1 ¥9Z DJ0G° AN
APT WOD" NINN | X8CT a1 AMUYMEIT | A2 [Je by 36y | N2 J¥I * LS T MONMO
Ay WO * e - o IR . T4 WOD " IWUM0D | N2y HE” 8iv3d | xe oo - arin-

= AZLS ¥V CALIOILA -~

CAITLIIIN [(PUIWIEDY JEAM PUP ‘UEINGNOD BWELIUTPW XuA

W Y)EM @I TUNBWOD O OUDTW N/ dD ® MOT[® O) ALUiqQLI] ® “S@IILI{IIN XS |p [wisueg
w1 Ha” ISAM | 0L AT BNA-XYA | AZT HETYT TIDO4ASNN 1 AZT @7 38YNINN
¥Z1 ¥an- dUMB | M96 AT HMIG-L1MOS | AT HEI° NNALIG | vs. MG 88-as
A91 WOD° NN | AT BETTNd-N | X8¢ 4" A0 1 9T MET1T JWNNA-a
Nz JUIABIIDND | Ay W02 * T | 91 HETITUIMOINGED | e 99" Atin-

—= A99C £SO ALITELN --

"PURWWOD JJAL 48IJING € PUR ‘PESU IBAS PINOD NOA S81I03ID8ITIP
P8JJOS By} [IW ‘S}4 IxE8} ® DUSTQWEDE AQ AJJLNIes 8[1) ‘weiboisd PIwOgASy Didww
® ‘ABX MIMD ‘Pivog 213317 Ui Syl 4O JUSWEIUNTHUS GOIE AIO[3 Swi) [we.-opnasd

® ‘IN0HI0Y JOIZSE PEg ‘SSIITIIIN dN-NORG @134 ‘SwWRIHOID ARTLEIN ASTT eAyssey

9 8T 6@13dAL
282 ¥E71° 3733005 | M9 ¥E” a.-as | X8 HET°ITEWUNIE | 181 8T AINAIMO
A9 WOO" NN L A6 HET° IL-871 | AZE ¥ET° aUECNId | 124 ¥ETC na
»Zz JUIASIVDED | Ay W02 ° J¥J | ey uwal” na | 1e zee" N~

—— A8B8L Ze#-ALITILN -

‘sasow pue ‘wesbo.ud

18Qe [X8 1p Je8U ¢ ‘sa1dod DuIRew INOYJIIM BUSIE LEEN LEYI0O O} SB[J) SAAOW YD jiym
3Ny ‘ssejoods Jurad ‘serri BUIGNOMSSUd ‘Se(ty paseie BulieAoded Joj asyyINN
‘WBINAS J13H @IS [AWOD ¥ ‘S@IIFTTIN #dAY IKANS ‘Iuswebeusw 811} JIIMS MIN

39 ¥ai- YHIX | NPT HETT TDOHSNN 1 BT AT STUHINN | AT HAET " aNSHILNS
L1 4 ¥871° WSY-AS | AZ1 HETONOMESYd | %91 WOD° NN | 1oy HE)" BOZJIMSN
AP HATT BZIANM | MZe dETT SZ4IM 1 e He” XId4 | 1 ua7° aNI 3
A0r w7 PIX3) AZ1 HENCWYNCGNSIA | 191 HETCIF3AVIINIA | 8S ME1°Q3SS/41a
AYE ¥E° 00dS3Q | »Z JUILBIDIOYT | Ay [vie g D ! e 180" Mnin-
-= A98L 122 ALINIAN -~

3y Adodm.s Isnf ‘aj1s peq e j0

ased ey3y ul cAj4adoud AdOoD J0U PIP YITym 88113 Aue Jiuoded [[Im yBIP Bay3 pue

<CNYNLIH >THI< oY

:483us Ado> poob ¢ 8B noA sunsse o)

"@y1y bBurnyiom e

OJUO ABIP [IL 4NOA ACDOD O} B8NS 8G SAeMI® pue ‘suse.ids wdTIH,. ®,.3) Peay a1,y

Adeaqiy w BurtuseUOD XS IP YIWe uOdn PEPNISUL BT pue ‘sejawiqQil [ie ejws.d

O3 PASN AJLLEIN A40.UQTT #UY ST WOD NN "AJwiQ| By3 S[pury O} esn 1 wajysAs

BUY BT YITUM QYYD ANUNEIT FHL “IB0°SNL, ‘48pI0 O3 B WeyI YIIM UeT[TeRiun ale

NOA 31 ‘@14 Auwiqgr) @ 03 yowoudde Isaq ay) w"S834eUQIT,, Ut pade|d ase saj1y
%31 ASIP Yowa uodn S8[T14 O ueqwnu Isabae] eyl %owd 05 IFION INYINOJIWI

HOD AMOEHAEI Y 3L

11

The Computer Journal / Issue #23

yux "SYs1(] Aaeaqr Buriap.o Joj cp aBed aag yry

TPBUIEM UBBY BARY NOA 8POD (/1 JNOA BUuTITam uBym saeystbeu

pue sbe() []¢ ares NOA BunNs Bew ING ‘T UD %HJOM UED NOA assym N0 st abenbue]
Sy} UT BINPOW JNO/N] 8Y] - XI0M 8 .)[GUH 8] [PWS 8YJ MOY PBUIES| SA®Y NOA
18339 abenbuey s1yy Apmyg *J1SYd-3 404 @DUNOS WIH Y PUNOS | [13un abenbueg
143 UD pajiels yOOQ w pey OS(e | “@pPOD GERB UL JISYd PSINITS4 [N} ¢ S SI1y)
ABYL ¥ATT 13EHYL 1 A91 WOD NN 1 Ay wWOJ " J¥D t e (o0 ONY -

-~ ABYT [0S SIOUNONY --

cmou 3Ienf D, ul IWesejul

UR BARY JOU OP NOA 31 USAS BWOYU BUO BTy} BXF] "I (VWS 4O UDTISUSA SIUI

IN0Oge UBJIITIM BRODQ [PIBABS Bse BIBY)Y INQ *Poob AusA 3 ,usy uotIIRIusSWNIOP ay)
cieb 03 sbexoed ayy st syl *OUDIW ¢ U0 weisAis Burtwwe.uboud >, syl O eEn eyl
Ul jessejut IseyubIIe Byl eAwy NoA 3] ‘sxioy abenbue(D TS, By BT EIYy)
A6 HEDID-T1TUWS 1 M8k ¥ATT J-TWKWS | A9 WODC AN | 1Z J¥I LS T I¥O
Rl 4 WoD* I¥D t A2 200" NY | AZT WOD* NY | %9 990" ONY Y-

~— WOBZ 999 SIOUNONY -

-@benbue] JIgyg UMO UNOA HBuTubTsEp Uo matTies @ Op Ave | ‘sasbenbue] sseyy uy
Issiejut ybnous e1 Sis8y} 4] “HIB][O04IUOD ssEd0.d (eruIEnNpul DBulltam oy poob
®J® pue w814 BPOD PEEPE Sur asey] -"s3defoud 4eYIO 03 paydvai-epys 0b 3Ing
‘sebenbue | JISyg , Tute, pue LAuT}, SSBY) UOCON pasEq HOOQ ¢ PBIIEIR | ‘NOA Joj
HSIp Byl 81 esay ‘syiom sbenbur] DISYd Y MOY INOQE PBISPUOM JBAS BARY NOA 3
A1 JOQMNSIAINIL

ki 4 WOD*XSIGINIL ! %99 WSYU WSIGINIL | AZ R 1831 | n9 161" A3¥1¥v18
1z J0Q " NIYINYLS t N9 WSY* NOWTIT | 129 WSY® 447377 1 A 220G °J1sv@I1}
18 HO2°JISYETITT | 198 WSYTIISwd I | 42 JHIASIHIONWD | Ay WOO pul- o)
L2] 204" w/J1sva | A8 HOJ ' S/318vE | A9L WBY°® C/IJ1ISvd | %9 [~ NG -

-— M9GE SOP "SIOVNONY -

*Alpeq (enuYw ¥ PSBU ING ‘weuboud 8SIU Y BT LWOT. *

OJUT A[ITJSLIP SO [GEESSE 3}] IO UDIIVIUSMENDOP SWOS 8tum 03 Dujuesw useq eArvy
I Uotym 203 2, UY UBJIITUM LUBIQWSERE OIDR ¥ ST JUWAN 353 (003 s, sewwe aboud
@314n0ney A "puaeog 813317 98- JNOA weubousd o3 pssu noA ButyIAiseny

TIMOHD BUI Y3ITM BUTNIOM J0U UBUM BEN | 31X (OO} BY) BT BTY| SIefqUasETS TP
98-1 [v48ABS puer ‘IENUEW JUSIEP ¥ ‘SISIIBAUCD BPOD BIINOS Gp-7 O PBO8
‘UD IR IBA JUeIRD BT B [(M B9 LS [Quasse #98-71 ouDel Wiy Aw svy sbexded syy)

»8 WOJ“3IDMNOBZZ | ¥l WOD" HHO 7
L1 4 HOJ “ZNEAFHX | A9 HWOD° Z3AWIX | 81 WOD" JUHAN | b WO * O8NN
N0l 996" 1X31L 1 0z See” 1X3L 1 %9 oo X33 1 AYT CO0” 1x348
"Dz Zee" 1X3L 1 781 100 41X31 1 8T WOOD°* WEYa1L ! %9 WO * 33N083Y
19 [24 Yo0Nd | AZ Wi " £808d | AZ Wiy * ZO0¥d ' 1Z Wiy * 18084
8L 204Q° ASIA t AZY DOW" DIZWSYA | N8By DOW* ‘WBYa | @1 W02 ° WEva
A9 [oe by 1¥3AD | N8BT WIY* 1¥3AD 1 %2 JYI ASINOHD 1t Ay WOO - o =]
A9 2300° HWIY 1 vl WOD" HIY 1 21 WOD" NY | X9 Yoo ONY -

—~ MOLS ¥O9 " SIDYNONY -~

"SM810 1230044 SOQ-MIN
oyl Yitm Buoie Apnyis 03 NOA 103 swe.aboud dJ0 (vrisAes Oniw 8uw Baey) *8poO>

®34nos Y3 e ‘sbenbue| Ajqessse bujiyoway 403 PREN UDIBIBA PETSIPOW Aw SP [[(8m
0 ‘B IQWASSY INOYD) SYF SO UCEEIBA H/dD TPUtBIan 8ay) suiwlUoD ebwydwd si1y)

A9Y NUW-© udI7
A9 300 ° ULIZ | A¥E WBY " ¥dIZ 1 et eOZ° 082 | N0l B07° ez
Al 907" aesz t xBt B0D2° 2082 t AZ1 v 13807 ! 182 00Z° 90017
4 207" ve8z | ne o0z " 282 | %8 [370 Bg 282 t N2 WOD *NIY-dIIX
"z 0D "YNI~dIIX 1 HZ dW° 420X | t¢l 200" 40X ! %y [e by Lenls
18 B0Z° WAYIY | AGZ £XL1T IIMOND | AOT AX1° GIMOMD | N9z ixL® Y3IMONI
*®1 WOD" IMOM3 t HZ JYI°LSIHIJND | Ay [e by J¥D | e 98" NV -

= OiFIS £O0 SIOVNONY) —-

iSNEIBAS [PV UTPWOP D IQNd IB8Q BSYI O BUY | ; JBAD SEWT)

19 40A8S #214d BYY YIJOn S8 3] HUINI | “TeISR4 GBON @3Inb 0u INQ ‘DENNL uey)y
88N [OOYIS SO PEIINE BIOW ‘GBISAS (PISRY T4 ¢ 83)] TESAUIeNg O INO Jubm
Auvedwod sy) s.ojeq Butmo((o} abiwl seyjw.s v pey pus jJusesidet (edevy pood Aiea
T 83 STl CIENURE Y IM BBIBAS [UISRY (i NAT IOV CLHC BLSS 1IN YUY B Syy)

91 WoD* NN | 2841 ¥ ZWISYLC
AZOT HETTIWISYAE | NZ DJUICLSITDIONO | W WOD® W 1 N8 Zes® onvY-
~= MZ9T Z8S BIDWIONYT -~

<1014

U0 UOIIPIUBWNIOP AUuP BARY SUOAUY cOUIIPIIENIS IVOW BEPM VSTV AQI] SBBY} (¥ Lo
UO TIFIUBENDIOP BYY YONOYY ‘HANDY PUT *10T1d ‘10600 4O SUDTIIRUS. JUBISP Alaiwy

nz . lohd 038

A9 HE1" 1071d + ¥l WOO* Zivvd 1 191 WOD° NINN | X9C wa° Hi1N04

%8 W02 ° 33x3 1 N . o OM3G | "2 JHILSIDIDWD | Ay WO ™0

B8 J00° T04E00 | 1Pl WODC Q0D 1 vl WOD° JNILNID | W B te 7l

Az |y 1740) 19 ¥@°T WW0OW 1| HZ 0" Hagy | ne 11 - ONYTY -
-= MPIT 169 "EIOVNBNYT —-

*Buoy Alen

203 IN8I8JUT Aw Binjded 03 YONOUS Pood ou INQ L ‘ITUUNG OUYM, JTPS ® BT AlEIBAyY

APS WO "XNIMLNULE 1| A9 WOD® NN | 196 HET" ANILBAW | A9T BvE "NDISUYANL

APBT MG ¥SINVO | N JUILSITIMOND | Ay W02 " NI | e 88"~ DISvaEN-—
—— RLL voe°DISvaN —-

‘BYE-T11N UY Suw an(eA (P1308 Bulwaspa.s ;o sweibouid JIBvEN BS0y| °“sawed euoy

B0 ¥A°SYE-TILIN | NZ1 Sva" SAMOMS | %91 WOD° nmN
Az Syd® IDRINH | 19 sva * IBHOH | 18 gva“ ona ! ¥z JYI *A817IMOND
L1 4 W03 * JMD 1 A9 WDO° 88IHI | MPT WOD" WNHIIVYD | ¥9T J00° 3IWUSYD
A9 8va° INUBYI | A Svd® 3604 | 28 8va ANt u9 Svd" XIrxa
vl WODC o1g 1 v SUE°lYNNYIYE | N9Z H¥aT1 T3A0IYINY | e £00° JI8vaN-

-— NZLE LO00°OIBAUN —-

*poob eq

483380 PEY ABYY ING ‘MBIABA TIIM | JUSSUDJITAUSE INDINO 8I10A ¥ Yitm 8 1qsIvdeod
seweD BinNjusApe poOOE °"PeILoddnes 8G I0U [[IM Pur AJT20T4d B JOU BT SBWWRY

A91 SOE EHUMHYLES | #ST1 HOH ZUMRVIE | X2 J300° NAOUd

18T WOD™ NURHIYL ! 191 WOO" N | X Svd° THUNNT | N2 8ve ° 3417
AB9 HETIT CSIHVO | NZQT WA ZSINVD | AvL METT ISIMVD | N2 JHD “A8S1HOMD
A W0J " D | 92 Svd° IFUBYI t Ae sva © 019 | e Z090° J1svan-

—= Mp8L Z69°JIBvaN -

‘CI-Od POIPIL B8q ARw IRy} ‘sdnuid sendwo>s

IPEU BWOS SRy NATI'INY "UOISAEA JUlod gGo “sawed smjusApe (v ;O pasund

Isow Byl sy pur ‘papeibdn AT3uede. ‘ewed NININVGY TWUNIDIND SUY SPY NSIP Biy)

191 HOD” NN | N2 YD *LASI NI | ¥ [vely 0

ASZ wyd1” ISYHD | ALt ¥E° ANY | ANZLY NETITUNININGY | @ 186° J18vaH-

SIVOD INOYIIM ‘8N TAISIP

Aroniy Aww am sebenbue| aiv pel.loddns & (1IN JPY) SJISYE ATUO Byl *J8Yy3any

wayy I4oddns Jou ((1m pue et se, sBulisy| esay) Burie;ijo suw am JigvE

te1D480w0d ¢ 61 SIY) SY “IJON0ADTH AQ PIOS JISYE (P1Ds8wwod ¢ 81 JIBVAEN ILON
—-= WOSLC I99°II8vAMN -

CEIUIBATA SO AJIRIBATUN BYF IT PESN ST ‘SHERLHUIEN YITM BulIom L0 SBTT
poob swos puw ‘cudwy By} J0) PETHIPOW BG UL ING ‘OudAey By} uoj paub isep
SRV BI.NOS AJIFIIIN SHE GWOS WU SSN O3 MOY ‘SWNISAS gSgdy O ISET ¢

AZZ XOx° 8488 ! N91 WOO° AN | AZZTT 871" F1LWaH
L 14 300 "WHIL0¥DE | ABZ WSY"IAGY/ZdN | AT UIASIIONI | Y W03 * o
ABY METITCTAIINNGD | APZ HMETITLLOINNGD | MOZ HETHLIINNGD | ¥ZT HODO123INNOI

AZL HAI0NMdN-3AE 1 AP INT“OudN-3AG | X9 © ois1™€g | ¥@

== MLL OO SNOLLIYIINWHNOD ~-

00 ° NIWNOD-

42

disk libraries were organized. A disk was never released until it
became filied with random selections. We felt that a library
should be constructed like a library, and began sifting through
the disks. I had in mind selecting files that could used on the
AMPRO VOICE COMPUTING SYSTEM, for the blind, a time
consuming task. And the publisher spake unto The Hermit, ‘‘Get
. The Damn Listing Done!"’ and The Hermit did comply, for when
the publisher speaks, we poor galley slaves must listen.

I have not gone through each and every disk, nor fully tested
each and every file. However, these disks are not just filled and
forgotten. Each disk is in a category, and the files it contains
will always be the same. As an example, ‘UTILITY.004"" will
always contain library and catalogue programs. As long as
there is room on the disk old versions will be placed in archive

" files, being replaced by new releases of the same class and type.
New will replace old continuously. As I work my way through
the library I will refine, sort, and adapt the disks. This is a living
library, not a collection of files upon disks. When we get our BBS
system on line then you will only have to refer to the category of
disks and enter, “WHATSNEW"' at the system prompt to see
what files have been added, and what files have been replaced
with newer versions. What follows is our ‘BASIC LIBRARY
CORE,” the place were we begin building our library.

The files are tested using a Kaypro 4-84 as a terminal, and
some files may, at this time, be intended for use upon only a
Kaypro computer. As I work my way through the files I will at-
tempt to convert the files for generic terminal use, and Ampro
machines. These disks are sent to TCJ in Ampro DSDD 48 tpi
format. Other disk formats may be had by contacting TCJ with
your format request.

Special Library Services
Due to distribution restrictions between TCJ and myself, a
duplicate library will be established at TCJ and at ““THE HER-

The Computer Journal / Issue #23

MIT’S CAVE.” Each issue of TCJ will have a listing showing the
current state of the library.

In addition to the normal copying, shipping, and handling
charge for these disks, you may request a custom disk con-
taining only the files you have a need for. I will provide this ser-
vice based upon demand, though all shipments will be routed
through TCJ.

FREE Software, 2 for 1

Often I will issue a call for special PD software. These calls
will be for materials I require for my Public Domain selections
for the disabilities, which have a special listing. If you send in a
disk containing the software we are looking for, with source
code and means of assembling or compiling same, (i.e. so I can
modify it for voice or other use), I will send you two free library
disks of your choice.

If you convert a program to AMPRO format, update it, or just
want to help your fellow computerists by donating a program of
your own, I will send you two files for every usabie file you send
me. By usable I mean a file we do not already have, or one that
is legally in the public domain, and can be used without cost by
everyone. When donating original works be sure to send me a
statement that you authorize its release into the public domain.
Where there are duplicate submissions of a program type,
preference will be given to works created with the languages
contained in our library, (that we can distribute), or TURBO
PASCAL.

The costs of this special exchange program will be born by
myself, not TCJ, whose involvement is concerned only with the
distribution of library material.

At this moment in time we need text editors, and good BASIC
language source codes, so root around the disk graveyard, or
just get creative! B

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms,
but these registered trademarks are
the property of the respective com-

DON'T ASK HOW OURS CAN BE SO FAST...
ASK WHY THEIRS ARE SO SLOW!

panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the

“.. a breath of fresh air . .”
Computer Language, Feb. 85

“,. in two words, I'd say speed &
flexibility”,

Edward Joyce. User's Guide #15 features.

NORMALIZED PERFORMANCE
Assembie

ZCPR3
to create a
HEX file

(Mitek, Echelon)

ASM (2500AD)
V7B ZAS (Mitek. Echelon)
ASM (2500AD)

gl 1.00 z8soasm

min sec 1:17 3:268 5:25 6:13 :22 :49 1:00

2Mh2 8Mhz
8" $S/SD Ram Disk

Now fully compatible with M80
in .Z80 mode with many exten-
sions. Time & date in listing, 16
char. externails, plus many other

To order, or to find out more
about our complete family of
development tools, call or write:

—~S LR Systems

1622 N. Main St., Butier, PA 16001
(800) 833-3061, (412) 282-0864
Telex 559215 SLR SYS

(A C.0.D., Check or
v _ 4 | Money Order Accepted

SHIPPING USA/CANADA « $3 o OTHER AREAS + $10
Z80 CP/M compatibiity required ce.

term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

Apple I1, IT +, II¢c, Ile, Macintosch,
DOS 3.3, ProDOS; Apple Computer
Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter-
national Corp. IBM-PC, XT, and AT;
IBM Corporation. Z-80, Zilog. MT-
BASIC, Softaid, Inc. Turbo Pascal,
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even if not
specifically mentioned in each occuren-

The Computer Journal / Issue #23

Z Corner
(Continued from page 5)

You can access any drive or user by
specifying the Drive and User in the
command. For exampile if you are in user
area A5, and you want to transfer
MYFILE.TXT which is in A3 to B6, and
your file transfer program (the ZCPR3
file transfer program similar to PIP is
MCOPY) is in A0, you would enter the
command:

MCOPY B6: A3: MYFILE.TXT

It would take a lot of work and
duplicating files in the various user areas
to accomplish this from CP/M 2.2.

Once you become accustomed to how
easy it is to access the user areas under
ZCRP3, you can separate different types
of files into different areas to make the
directories less crowded. This is
especially important when using a hard
disk so that you don't have to look at
directories with several hundred entries.

Conclusions

This first article only touched lightly
on one aspect of ZCPR3, and I intend to
continue with more detailed information
on its utilities in the next issue. Please
send in your questions, tips, and com-
ments to share with others. B

43

—
GET PUBLIC DOMAIN SOFTWARE!
HUNDREDS OF FREE PROGRAMS AVAILABLE TO COPY!

PUBLIC DOMAIN Software «s not copyrighted so no fees to pay' Accounting data-hase
business games. languages and utiities free for the 1aking' Some of these programs sold *or
hundreds of dollars before being placed m oublic domain Join hundreds of Jsers enjoy:ng a
wealth of inexpensive software Copy vourselt ang save’

USER GROUP LIBRARIES

Rent Buy
IBMPC-SIG 1-390 Disksides $41000 385000
IBMPC-BLUE 1-154 Disksides $17500 S43530

SIG/M UG 1-240 Disksides oL
CP/M UG 1-92 Disksides S 4500 $25090
PICO NET 1-34 Disksides o $2500 310020
KAYPRO UG 1-54 Disksides S B850C 520000
S
S

$15500 $65000

EPSON UG 1-52 DiskSideS . ..o oe o 650C $200 50
COMMODORE CBM 1-28 Disksides 2500 S 6520
Get a PD User Group Catalog Disk - $5 00 PP —- Spec:fy Format’

Library rentals are for seven (7 days after receipt. three (3) more days grace to return " you use
your credit card — no disk deposit Shipping. Handling ang insurance $9 50 per brary Call

(619) 727-1015 for 3 min recording. Call (6191 941-0925 orders and tech info

: [NATIONAL PUBLIC DOMAIN SOFTWARE ‘
S | DMERS 1533 Avohill Orive. Vista. CA 92084 | amex © “yrea
‘ 1-800-621-5640 wait for tone, dial 782542 ——— ————

INDEXER Listing 2

(Continued from page 32)

Name := GetStri
1§ Name = 'F1d' then exi1t)

Here’'s the function:

Function GetStr : Stri
VAR Stat : Boocleans
Key : Charg
Return : Stri
Count ¢ Bytet
Strval ¢ Stringl2y
Begin
Return := *°g
Key = %83
Count := @y
Stat := Falsel
Repeat
If{ Keypressed then Stat = Trues
1f Stat then
Begin
Read (kbd,Key)
Case Key of
#27 : Begin
1f KeyPressed then Read(kbd,Key)}
14 Key In(#59..4681 then
Begin
Str (Ord (Key) -358,8trVAl)
GetStr = "F" + Strvall

Exits

End

Else

Begin
GetStr = Kayf
Exits

Ends

Ends

#13 ! Begin
Get8tr = Returng
Exity
End}
#8 : If (Count > &) then
Bagin
Return := Copy(Return,!,Length (Return) -~ 1)}
Qotoxy (wherex—-1,wherey) |
Write(” ’)g
gotoxy (wherex—1 ,wherey)s
Count ¢= Count - 1}
End}

{ <= put here all characters to be accepted normally)

et ! Begin
Return != Return + Key}
Count := Count + 1}
Write(Key))

Endt
Endt (case)
Stat 'e Falses
Ends (i¢)
Until (Key = #13)3
Ends (function)

The Computer Journal / Issue #23

Back Issues Available:

Volume 1, Number 1 (Issue #1):

¢ The RS-232-C Serial Interface, Part One
o Telecomputing with the Apple]{: Tran-

sferring Binary Files

» Beginner's Column, Part One: Getting

Started

e Buildan “Epram’

Volume 1, Number 2 (Issue #2):

® File Transter Programs for CPIM

e The RS-232-C Serial Interface, Part Two
e Build a Haroware Print Spooler, Part
One: Background and Design

e A Review of Floppy Disk Formats

¢ Sending Morse Code With an Apple]{

s Beginner's Column, Part Two. Basic
Concepts and Formulas in Electronics

Volume 1, Number 3 (Issue #3):

e Add an 8087 Math Chip to Your Dual
Processor Board

o Build an A/D Converter for the Applej[
e ASCII Reference Chart

o Modems for Micros

e The CP/M Operating System

o Build a Hardware Print Spooler, Part
Two: Construction

Volume 1, Number 4 (Issue #4):

* Optoelectronics, Part One: Detecting,
Generating, and Using Light in Electronics
* Muiti-user: An Introduction

* Making the CPIM User Function More
Usetul

s Build a Hardware Print Spooler, Part
Three: Enhancements

e Beginner’'s Coumn, Part Three: Power
Supply Design

Volume 2, Number 1 (Issue #5):

* Optoelectronics, Part Two: Practical
Applications

o Muiti-user: Multi-Processor Systems
e True RMS Measurements

e Gemini-10X: Modifications to Allow
both Serial and Parallel Operation

Volume 2, Number 2 (issue #8):

» Build a High Resolution S-100 Graphics
Board, Part One: Video Displays

s System Integration, Part One: Selecting
System Components

e Optoelectronics, Part Three: Fiber Op-
tics

* Controlling DC Motors

o Multi-User: Local Area Networks

s DC Motor Applications

Volume 2, Number 3 (Issue #7):

s Heuristic Search in Hi-Q

* Build a High-Resolution S-100 Graphics
Board, Part Two: Theory of Operation

¢ Multi-user: Etherseries

s System Integration, Part Two: Disk Con-
trollers and CP/M 2.2 System Generation

Volume 2, Number 4 (Issue #8):

® Build a VIC-20 EPROM Programmer

o Multi-user: CP/Net

¢ Build a High-Resolution S-100 Graphics
Board, Part Three: Construction

o System integration, Part Three: CPIM
3.0

s Linear Optimization with Micros

s LSTTL Reference Chart

Volume 2, Number 5 (Issue #9):

s Threaded interpretive Language, Part
One: Introduction and Elementary
Routines

o Intertacing Tips and Troubles: DC to DC
Converters

o Multi-user: C-NET

¢ Reading PCDOS Diskettes with the
Morrow Micro Decision

e LSTTL Retference Chart

¢ DOS Wars

¢ Build a Code Photoreader

Volume 2, Number 8 (Issue #10):

e The FORTH Language: A Learner's Per-
spective

o An Affordable Graphics Tablet for the
Apple J[

s Intertacing Tips and Troubles: Noise
Problems, Part One

s LSTTL Reference Chart

o Multi-user: Some Generic Components
and Techniques

e Write Your Own Threaded Language,
Part Two: Input-Output Routines and Dic-
tionary Management

o Make a Simpile TTL Logic Tester

Volume 2, Number 7 (Issue #11):

e Putting the CPIM IOBYTE To Work

e Write Your Own Threaded Language,
Part Three: Secondary Words

* Intertacing Tips an6‘&oublos: Noise

Problems, Part O
e Builda U Board For the S-100

Bus

e Writing and Evaluating Documentation
¢ Electronic Dial indicator: A Reader
Design Project

Volume 2, Number 8 (Issue #12):

o Tricks of the Trade: Installing New I/O
Drivers in &8 BIOS

o Write Your Own Threaded Language,
Part Four: Conclusion

e Intertacing Tips and Troubles: Noise
Problems, Part Three

o Muiti-user: Cables and Topology

e LSTTL Reference Chart

Volume 2, Number 8 (issue #13):

* Controliing the Apple Disk J[Stepper
Motor

* Interfacing Tips and Troubles: Inter-
facing the Sinclair Computers, Part One

* RPM vs 2ZCPR: A Comparison of Two "’
CPI/M Enhancements

e AC Circuit Anaysis on a Micro

*« BASE: Part One in a Series on How to

Design and Write Your Own Database -
* Understanding System Design: CPU,

Memory, and 1/10

Issue Number 14: -
o Hardware Tricks

e Controlling the Hayes Micromodem 1!

From Assembly Language

e S-1008to 16 Bit RAM Conversion

e Time-Frequency Domain Analysis

» BASE: Part Two

¢ |nterfacing Tips and Troubles: Inter-

tacing the Sinclair Computers, Part Two

isgsue Number 15:

e Interfacing the 6522 to the Apple J{ and
‘Je

* Interfacing Tips and Troubles: Building

a Poor-Man's Logic Analyzer

s Controlling the Hayes Micromodem Il

From Assembly Language, Part Two

* The State of the Industry

* Lowering Power Consumption in 8"

Floppy Disk Drives

o BASE: Part Three

issue Number 16:

* Debugging 8087 Code

* Using the Apple Game Port

s BASE: Part Four

¢ Using the S-100 Bus and the 68008 CPU
* Intertacing Tips and Troubles: Build &
“Jellybean” Logic-to-RS232 Converter

Issue Number 17:

e Poor Man's Distributed Processing

e Base: Part Five

o FAX-64:Facsimile Pictures on a Micro
e The Computer Corner

e Intertacing Tips and Troubles: Memory
Mapped I/0 on the ZX81

issue Number 18:

« interfacing the Apple |i: Parallel
interface for the game port.

e The Hacker's MAC: A letter
from Lee Felsenstein

e S-100 Graphics Screen Dump

e The LS-100 Disk Simulator Kit: A
product review.

e BASE: Part Six

o Intertacing Tips & Troubles:
Communicating with Telephone
Tone Control

e The Computer Corner

The Computer Journal / Issue #23

Issue Number 18:

¢ Using The Extensibitity of FORTH

¢ Extended CBIOS

* A $500 Superbrain Computer

* Base: Part Seven

¢ interfacing Tips & Troubles: Part Two
Communicating with Telephone

Tone Control

e Muititasking and Windows with CPIM:
A review of MTBASIC

¢ The Computer Corner

Issue Number 22:

* NEW-DOS:Write your own operating
system.

s Variability in The BDS C Standard Library
e The SCSI/ |Interface: Introductory
Column to a Series.

o Usinf Turbo Pascal ISAM Files.

* The AMPRO Lijttle Board Column

Issue Number 20:

¢ Build the Circuit Designer 1 MPB:
Designing a 8035 SBC

¢ Using Apple Il Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
¢ Soldering and Other Strange Tales

* Build a S-100 Floppy Disk Controiler:

WD2797 Controller for CP/M 68K
* The Computer Corner

Issue Number 21:

* Extending Turbo Pascal: Customize with
Procedures and Functions

¢ Unsoidering: The Arcane Art

* Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

¢ Build the Circuit Designer 1 MPB: Part 2 -
Programming the 8035 SBC

* The Computer Corner

sometime in May.
CP/M-80

Disks Available

The following disks are availabie for $10 each postpaid. Other
formats may be available on special request, and many of these
files will be available oo our RBBS which should be on-line

* The Computer Corner TCJ User Disk Library Core-AMPRO 5%" DSDD; NEW-DOS

CPP source file, Crowe Assembler, and text files-AMPRO 5%"
DSDD; Houston's ISAM and INDEXER source {iles-AMPRO
5Y%" DSDD or Kaypro 2 SSSD.

MD-DOS

Houston’s ISAM and INDEXER source files.

NEW-DOS

An AMPRO format 5¥4 DSDD with the files for the
Crowe assembler and the CCP is available from The
Computer Journal for $10 postpaid. Inquire about other
formats.

Additional disks with the BDOS and BIOS portions of
NEW-DOS will be made available when these portions
are published. Anyone making extentions to NEW-DOS or
implementing it for other systems are urged to send their
material to TCJ so that it can be shared with others.

Back issues are $3.25 each in the U.S., Canada, and Mexico. All other countries are $4.75 each for surface mail.
All funds must be in U.S. dollars on a U.S. bank.

ORDER FORM

Enter my subscription to The Computer Journal for the period checked. Payment in U.S. funds is enclosed.
O one year (6 issues)$14in U.S. [0 two years(12issues)$24in U.S. [new subscription (] renewal
Disk name and #

Amount
Back Issues #'s @$3.25 ea.
— {0 Checkenclosed O VISA O MasterCard Card#
Expiration date Signature —_—
- Name _ S
Address
- City State Z1p - .

The Computer Journal, 190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

> £ sersvou FREE!

e
2 Operating System, an 8-bit OS that flies! Optimized HD64180/280 assembly language
code — full software development system with proven linkable libraries of productive
subroutines — relocating (ROM and RAM] macro assembler, linker, librarian, cross-
reference table generator, debuggers, transiators and disassembiers — ready to free
you!

ek andd ety Produs DT, FES U 0m dy namicaily customized S i
Sy Gy AL LASKY AN TN
S kenen ophon alows quick Sofware development for ndusinal contcl
. W Al GUNGES TGT CH e ekl o0 persut 3 COMpUl g funcuons Ga. afta
= A Tem Omecet AnNet PC-Net Stk — Yam amcro o martrame
o ormegrg sty Dninbuted GfOcesSiNg dppantation GrOGRAM. are @asyiy
L N LT Zationd fexiidy, tth'\‘j:!»\';:[,r,, RIale) (AT I A STRTA I BN
o S Dommands e ine
LI Ormiglex series A COmemands kno AT Dy SImpie fdinies; Al vatlalae Lassitig
b e D Lot AL abROIl AW O] ety
e - CLOIMINACU e e dIIG WIET DI U LOMImiand fecdll dng execatior
o o nd Meny Generion anth snent vanaies
. coeand-fee searcn Patns hnamicdlly diteratie
. srcshented e idniguation and autGnialice arhive iy Al Dackup
o nejalate Bie ey 8 gianis disks ndnJled
o Sl Tesel ATET (e Aopgmes
o AT ILidse Ndndien CRMActenstics of over SG lumgputes and terminals
- A
O T T tutedd e DRI A0 JOCUMEeNiAlds Sulsystem
oy L Ol e SUDPON utihties
Your missing link has been found — ZI Now fly with eagles! Fast response, efficient
resource utilization, link to rest of computing world — shop floor to executive suite,
micro to corporate mainframe. Call 415/948-3820 for literature.
- ¢
-l
Echelon, Inc. 1o1FirstStreet o Suite 427 ¢ LosAltos, CA 84022 ® 315 948-3820
L) J

Computer Corner
(Continued from page 51)

1991 NEWS
A newspaper report from the year 1991...
“IBM LAW FIRM COSTING
MILLIONS... Recent reports indicate
that law firms representing IBM have
made millions in the last few years. Bet-
ween IBM's attack on unauthorized
copying and the attacks against IBM’s
products, several law firms have collec-
ted multimillion dollar fees. Most of the
action started in the mid eighties, and
have involved unfulfilled promises,
changes in product lines, and delays in
production of new items. ”’ An attorney in
the actions was heard commenting on the
cases; ‘‘it all started when management
thought they had squeezed all the little
guys out, could force users of old systems
to buy new products, they started in-
creasing cost excessively, figuring they

had a captive audience that would buy at
any price. Unfortunately they paid little
attention to quality and the promises of
their sales force...”

In the same paper.....

“APPLE SELLS 1 BILLIONTH AP-
PLE II.... A celebration was held today
as the 1 Billionth Apple II came off the
assembly line. Although the company
has improved its sales of Macintosh like
units, the major seller is still the Apple
II. The mid eighties introduction of
Macintosh support cards for the II has
guaranteed the product well into the mid
nineties.”’

Also..

“AT&T DROPS COMPUTER LINES...
AT&T dropped their seventh computer
line and vows to stay out of computer
manufacturing. Despite the company's
standing with UNIX, it never has been

The Computer Journal / Issue #23

able to penetrate the user arena and sell
complete systems. UNIX which was once
considered the software of the future has
since become almost unheard of. Some
vendors have hidden UNIX under other
operating systems, and thus became
user friendly, a problem with UNIX from
the start.....”

Lastly....

“Small Business Administration An-
nounces Largest Mom & Pop
Business..Computer Support...... The
administration today released figures
which indicate that more ‘mom & pop’
businesses have developed to replace the
large number of business failures of
computer retail outlets. During the late
eighties, a number of businesses went
broke and left millions of products un-
supported and opened up a considerable
market for small operations. These
businesses are one and two person
operations providing either walk in or
over the phone lines service. Support
operations are restricted to usually one
product and may have national
distribution....... ”

A short note....

“USERS GROUP MAKES 1000th
USER DISK. The original SIG/M users
group which has supported CP/M80
systems from the beginning in 1975 has
just released their one thousandth user
disk. Despite some industry spokes
peopie who have been saying CP/M is
dead, this group has continued to provide
new and free public domain software for
CP/M80 users...... ”

What Will Come True

All these quick little teasers should
have brought to mind, either fears or
joys. Most of us users, especially those
working directly or indirectly in the
business, have most likely considered
some of these ideas of late. With the in-
dustry in major upheaval and shakeouts
happening daily, all the stories abov